Show simple item record

dc.contributor.authorAgustin, Ika Hesti
dc.contributor.authorAlfarisi, Ridho
dc.contributor.authorDafik, Dafik
dc.contributor.authorKristiana, Arika Indah
dc.contributor.authorPrihandini, Rafiantika Megahnia
dc.contributor.authorKurniawati, Elsa Yuli
dc.date.accessioned2018-10-29T08:25:43Z
dc.date.available2018-10-29T08:25:43Z
dc.date.issued2018-10-29
dc.identifier.isbn978-0-7354-1730-4
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/87571
dc.descriptionAIP Conf. Proc. 2014, 020088-1–020088-7; https://doi.org/10.1063/1.5054492en_US
dc.description.abstractLet G be a connected graph, let V(G) be the vertex set of graph G, and let E(G) be the edge set of graph G. Thus, the bijective function f : V(G) ∪ E(G) −→ {1, 2, 3, ..., |V(G)| + |E(G)|} is called a local antimagic total edge labeling if for two adjacent edges e 1 and e 2 , w t (e 1 ) w t (e 2 ), where for e = uv ∈ G, w (e) = f (u) + f (v) + f (uv). Thus, the local antimagic total edge labeling by induces a proper edge coloring of a graph G if each edge e is assigned the color w t (e). The local antimagic total edge coloring, denoted by γ leat t (G) is the minimum number of colors taken over all colorings induced by local antimagic total edge labelings of a graph G. In this research, we determine the local super antimagic total edge coloring of some wheel related graph including fan, wheel, gear and friendship graph.en_US
dc.language.isoenen_US
dc.subjectSuper Local Antimagicen_US
dc.subjectTotal Edge Coloringen_US
dc.subjectWheel Related Graphsen_US
dc.titleOn Super Local Antimagic Total Edge Coloring of Some Wheel Related Graphsen_US
dc.typeProsidingen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record