On Super Local Antimagic Total Edge Coloring of Some Wheel Related Graphs
dc.contributor.author | Agustin, Ika Hesti | |
dc.contributor.author | Alfarisi, Ridho | |
dc.contributor.author | Dafik, Dafik | |
dc.contributor.author | Kristiana, Arika Indah | |
dc.contributor.author | Prihandini, Rafiantika Megahnia | |
dc.contributor.author | Kurniawati, Elsa Yuli | |
dc.date.accessioned | 2018-10-29T08:25:43Z | |
dc.date.available | 2018-10-29T08:25:43Z | |
dc.date.issued | 2018-10-29 | |
dc.identifier.isbn | 978-0-7354-1730-4 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/87571 | |
dc.description | AIP Conf. Proc. 2014, 020088-1–020088-7; https://doi.org/10.1063/1.5054492 | en_US |
dc.description.abstract | Let G be a connected graph, let V(G) be the vertex set of graph G, and let E(G) be the edge set of graph G. Thus, the bijective function f : V(G) ∪ E(G) −→ {1, 2, 3, ..., |V(G)| + |E(G)|} is called a local antimagic total edge labeling if for two adjacent edges e 1 and e 2 , w t (e 1 ) w t (e 2 ), where for e = uv ∈ G, w (e) = f (u) + f (v) + f (uv). Thus, the local antimagic total edge labeling by induces a proper edge coloring of a graph G if each edge e is assigned the color w t (e). The local antimagic total edge coloring, denoted by γ leat t (G) is the minimum number of colors taken over all colorings induced by local antimagic total edge labelings of a graph G. In this research, we determine the local super antimagic total edge coloring of some wheel related graph including fan, wheel, gear and friendship graph. | en_US |
dc.language.iso | en | en_US |
dc.subject | Super Local Antimagic | en_US |
dc.subject | Total Edge Coloring | en_US |
dc.subject | Wheel Related Graphs | en_US |
dc.title | On Super Local Antimagic Total Edge Coloring of Some Wheel Related Graphs | en_US |
dc.type | Prosiding | en_US |
Files in this item
This item appears in the following Collection(s)
-
LSP-Conference Proceeding [1874]
Koleksi Artikel Yang Dimuat Dalam Prosiding