Show simple item record

dc.contributor.authorKurniawati, Elsa Yuli
dc.contributor.authorAgustin, Ika Hesti
dc.contributor.authorDafik, Dafik
dc.contributor.authorAlfarisi, Ridho
dc.date.accessioned2018-07-04T06:36:55Z
dc.date.available2018-07-04T06:36:55Z
dc.date.issued2018-07-04
dc.identifier.issn1742-6588
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/86174
dc.descriptionIOP Conf. Series: Journal of Physics: Conf. Series 1008 (2018)en_US
dc.description.abstractIn this paper, we consider that all graphs are ¯nite, simple and connected. Let G(V; E) be a graph of vertex set V and edge set E. A bijection f : V (G) ¡! f1; 2; 3; :::; jV (G)jg is called a local edge antimagic labeling if for any two adjacent edges e 1 and e 2 , w(e 1 ) 6 = w(e ), where for e = uv 2 G, w(e) = f(u) + f(v). Thus, any local edge antimagic labeling induces a proper edge coloring of G if each edge e is assigned the color w(e). It is considered to be a super local edge antimagic total coloring, if the smallest labels appear in the vertices. The super local edge antimagic chromatic number, denoted by ° 2 (G), is the minimum number of colors taken over all colorings induced by super local edge antimagic total labelings of G. In this paper we initiate to study the existence of super local edge antimagic total coloring of comb product of graphs. We also analyse the lower bound of its local edge antimagic chromatic number. It is proved that ° leat leat (P n . G) ¸ ° leat (P n ) +° (G).en_US
dc.language.isoenen_US
dc.subjectSuper local edge antimagicen_US
dc.subjecttotal coloringen_US
dc.subjectPn . Hen_US
dc.titleSuper local edge antimagic total coloring of Pn . Hen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record