EMBEDDED LEARNING ROBOT USING FUZZY Q-LEARNING FOR OBSTACLE AVOIDANCE BEHAVIOR
dc.contributor.author | Anam, Khairul | |
dc.contributor.author | Prihastono, Prihastono | |
dc.contributor.author | Wicaksono, Handy | |
dc.contributor.author | Effendi, Rusdhianto | |
dc.contributor.author | Adji S, Indra | |
dc.contributor.author | Kuswadi, Son | |
dc.contributor.author | Jazidie, Achmad | |
dc.contributor.author | Sampei, Mitsuji | |
dc.date.accessioned | 2017-10-11T07:55:25Z | |
dc.date.available | 2017-10-11T07:55:25Z | |
dc.date.issued | 2017-10-11 | |
dc.identifier.isbn | 978-979-8689-12-3 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/82066 | |
dc.description | Proceeding of the 11th Industrial Electronics 2009 | en_US |
dc.description.abstract | Fuzzy Q-learning is extending of Q-learning algorithm that uses fuzzy inference system to enable Qlearning holding continuous action and state. This learning has been implemented in various robot learning application like obstacle avoidance and target searching. However, most of them have not been realized in embedded robot. This paper presents implementation of fuzzy Q-learning for obstacle avoidance navigation in embedded mobile robot. The experimental result demonstrates that fuzzy Q-learning enables robot to be able to learn the right policy i.e. to avoid obstacle. | en_US |
dc.language.iso | en | en_US |
dc.subject | fuzzy q-learning | en_US |
dc.subject | obstacle avoidance | en_US |
dc.title | EMBEDDED LEARNING ROBOT USING FUZZY Q-LEARNING FOR OBSTACLE AVOIDANCE BEHAVIOR | en_US |
dc.type | Prosiding | en_US |
Files in this item
This item appears in the following Collection(s)
-
LSP-Conference Proceeding [1874]
Koleksi Artikel Yang Dimuat Dalam Prosiding