Show simple item record

dc.contributor.authorNagamochi, H.
dc.contributor.authorMiller, M.
dc.contributor.authorSlamin
dc.date.accessioned2013-08-22T04:21:23Z
dc.date.available2013-08-22T04:21:23Z
dc.date.issued2001
dc.identifier.issn0012-365X
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/816
dc.description.abstractA simple undirected graph H is called a sum graph if there is a labeling L of the vertices of H into distinct positive integers such that any two vertices u and v of H are adjacent if and only if there is a vertex w with label L(w) = L(u) + L(v). The sum number (G) of a graph G = (V; E) is the least integer r such that the graph H consisting of G and r isolated vertices is a sum graph. It is clear that (G)6|E|. In this paper, we discuss general upper and lower bounds on the sum number. In particular, we prove that, over all graphs G = (V; E) with 5xed |V|¿3 and |E|, the average of (G) is at least |E| − 3|V|(log|V|)=[log(( |V| 2 )=|E|)] − |V| − 1. In other words, for most graphs, (G) ∈ (|E|).en_US
dc.language.isoen_USen_US
dc.publisherDiscrete Mathematicsen_US
dc.relation.ispartofseriesVol. 240 (2001) pp. 175-185;
dc.subjectSum Labellingen_US
dc.subjectBounden_US
dc.subjectisolated verticesen_US
dc.titleBounds on the number of isolates in sum graph labelingen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • MIPA [81]
    Abstract artikel jurnal yang dihasilkan oleh staf Unej (fulltext bagi yg open access)

Show simple item record