Show simple item record

dc.contributor.authorJ. M. Aroca
dc.contributor.authorA. Llado
dc.contributor.authorSlamin, Slamin
dc.date.accessioned2017-09-11T03:59:42Z
dc.date.available2017-09-11T03:59:42Z
dc.date.issued2017-09-11
dc.identifier.issn1571-0653
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/81683
dc.descriptionElectronic Notes in Discrete Mathematics 46 (2014) 19–26en_US
dc.description.abstractThe Ascending Subgraph Decomposition (ASD) Conjecture asserts that every graph G with n+1 2 edges admits an edge decomposition G = H has i edges and is isomorphic to a subgraph of H i+1 1 ⊕· · · ⊕H , i = 1, . . . , n−1. We show that every bipartite graph G with of one of the stable sets satisfies d n+1 2 edges such that the degree sequence d ≥ n − i + 2, 1 ≤ i < k, admits an ascending subgraph decomposition with star forests. We also give a necessary condition on the degree sequence which is not far from the above sufficient one.en_US
dc.language.isoenen_US
dc.subjectAscending subgraph deocmpositionen_US
dc.subjectSumset partition problemen_US
dc.titleOn the ascending subgraph decomposition problem for bipartite graphsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record