dc.contributor.author | Slamin | |
dc.contributor.author | Miller, M. | |
dc.date.accessioned | 2013-08-22T04:19:45Z | |
dc.date.available | 2013-08-22T04:19:45Z | |
dc.date.issued | 2001 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/814 | |
dc.description.abstract | A vertex-magic total labeling of a graph with $v$ vertices and $e$ edges is defined as a one-to-one map taking the vertices and edges onto the integers $1,2,\dots ,v+e$ with the property that the sum of the label on a vertex and the labels on its incident edges is a constant, independent of the choice of vertex.
In this paper we give a vertex-magic total labeling for the prism $D_n$ for all $n \ge 3$; and a vertex-magic total labeling for the generalized Petersen graphs $P(n,m)$
for $n \ge 3$, $1 \le m \le \lfloor\frac{n-1}{2}\rfloor$, and $n$ and $m$ coprime. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Bulletins of ICA | en_US |
dc.relation.ispartofseries | Vol. 32 (2001) pp. 9-16; | |
dc.subject | vertex magic total labeling | en_US |
dc.subject | Generalised Petersen graph | en_US |
dc.title | On two conjectures concerning vertex magic total labelings of generalized Petersen graphs | en_US |
dc.type | Article | en_US |