Show simple item record

dc.contributor.authorBalbuena, C.
dc.contributor.authorBarker, E.
dc.contributor.authorDas, K.C.
dc.contributor.authorLin, Y.
dc.contributor.authorMiller, M.
dc.contributor.authorRyan, J.
dc.contributor.authorSlamin
dc.contributor.authorSugeng, K.A.
dc.contributor.authorTkac, M.
dc.date.accessioned2013-08-22T04:15:34Z
dc.date.available2013-08-22T04:15:34Z
dc.date.issued2006
dc.identifier.issn0012-365X
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/809
dc.description.abstractLet G=(V ,E) be a finite graph, where |V |=n2 and |E|=e1.A vertex-magic total labeling is a bijection from V ∪E to the set of consecutive integers {1, 2, . . . , n + e} with the property that for every v ∈ V , (v) +w∈N(v) (vw) = h for some constant h. Such a labeling is strong if (V )={1, 2, . . . , n}. In this paper, we prove first that the minimum degree of a strongly vertex-magic graph is at least two. Next, we show that if 2e10n2 − 6n + 1, then the minimum degree of a strongly vertex-magic graph is at least three. Further, we obtain upper and lower bounds of any vertex degree in terms of n and e. As a consequence we show that a strongly vertex-magic graph is maximally edge-connected and hamiltonian if the number of edges is large enough. Finally, we prove that semi-regular bipartite graphs are not strongly vertex-magic graphs, and we provide strongly vertex-magic total labeling of certain families of circulant graphs.en_US
dc.language.isoen_USen_US
dc.publisherDiscrete Mathematicsen_US
dc.relation.ispartofseriesVol. 306 (2006) pp. 539-551.;
dc.subjectvertex magicen_US
dc.subjectdegreeen_US
dc.titleOn the degrees of a strongly vertex-magic graphen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • MIPA [81]
    Abstract artikel jurnal yang dihasilkan oleh staf Unej (fulltext bagi yg open access)

Show simple item record