dc.contributor.author | Slamin | |
dc.contributor.author | Prihandoko, A.C. | |
dc.contributor.author | Setiawan, T.B. | |
dc.contributor.author | Rosita, Fety | |
dc.contributor.author | Shaleh, B. | |
dc.date.accessioned | 2013-08-20T02:37:27Z | |
dc.date.available | 2013-08-20T02:37:27Z | |
dc.date.issued | 2006 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/788 | |
dc.description.abstract | Let $G$ be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$ and
let $e=\vert E(G) \vert$ and $v=\vert V(G) \vert$.
A one-to-one map $\lambda$ from $V\cup E$ onto the integers
$\{ 1,2, ..., v+e \}$ is called {\it vertex magic total labeling} if there
is a constant $k$ so that for every vertex $x$,
\[
\lambda (x) \ +\ \sum \lambda (xy)\ =\ k
\]
where the sum is over all vertices $y$ adjacent to $x$.
Let us call the sum of labels at vertex $x$ the {\it weight} $w_{\lambda}(x)$ of the
vertex under labeling $\lambda$; we require $w_{\lambda}(x)=k$ for all $x$. The
constant $k$ is called the {\it magic constant} for $\lambda$.
In this paper, we present the vertex magic total labelings
of disconnected graph, in particular, two copies of isomorphic generalized
Petersen graphs $2P(n,m)$, disjoint union of two non-isomorphic suns
$S_m \cup S_{n}$ and $t$ copies of isomorphic suns $tS_n$. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Journal of Prime Research in Mathematics | en_US |
dc.relation.ispartofseries | Vol. 2 (2006) pp. 147 - 156; | |
dc.subject | vertex magic total labeling | en_US |
dc.subject | disconnected graphs | en_US |
dc.title | Vertex-magic total labelings of disconnected graphs | en_US |
dc.type | Article | en_US |