Show simple item record

dc.contributor.authorRahim, M. T.
dc.contributor.authorSlamin
dc.date.accessioned2013-08-16T22:02:14Z
dc.date.available2013-08-16T22:02:14Z
dc.date.issued2008
dc.identifier.issn03153681
dc.identifier.nimNIM772008193199
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/775
dc.description.abstractSuppose $G$ is a finite graph with vertex-set $V(G)$ and edge-set $E(G)$. A one-to-one map $\lambda$ from $V(G)\cup E(G)$ onto the integers $1,2,3, \dots, |V(G)|+|E(G)|$ is called a {\it vertex-magic total labeling}, if there exists a constant $h$ so that for every vertex $x$, $$ \lambda(x) + \sum \lambda (xy) =h $$ where the sum is taken over all vertices $y$ adjacent to $x$. The constant $h$ is called the {\it magic constant} for $\lambda$. A graph with a vertex-magic total labeling will be called {\it vertex-magic}. In this paper, we consider the vertex-magic total labeling of wheel related graphs such as Jahangir graphs, helms, webs, flower graphs and sunflower graphs.en_US
dc.language.isoen_USen_US
dc.publisherUtilitas Math.en_US
dc.relation.ispartofseriesVol. 77 (2008) pp. 193-199;
dc.subjectvertex magic total labelingen_US
dc.subjectwheelen_US
dc.titleMost wheel related graphs are not vertex magicen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • MIPA [81]
    Abstract artikel jurnal yang dihasilkan oleh staf Unej (fulltext bagi yg open access)

Show simple item record