Swarm-wavelet based Extreme Learning Machine for Finger Movement Classification on Transradial Amputees
dc.contributor.author | Anam, Khairul | |
dc.contributor.author | Al-Jumaily, Adel | |
dc.date.accessioned | 2016-06-06T03:48:31Z | |
dc.date.available | 2016-06-06T03:48:31Z | |
dc.date.issued | 2016-06-06 | |
dc.identifier.isbn | 978-1-4244-7929-0 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/74520 | |
dc.description.abstract | The use of a small number of surface electromyography (EMG) channels on the transradial amputee in a myoelectric controller is a big challenge. This paper proposes a pattern recognition system using an extreme learning machine (ELM) optimized by particle swarm optimization (PSO). PSO is mutated by wavelet function to avoid trapped in a local minima. The proposed system is used to classify eleven imagined finger motions on five amputees by using only two EMG channels. The optimal performance of wavelet-PSO was compared to a grid-search method and standard PSO. The experimental results show that the proposed system is the most accurate classifier among other tested classifiers. It could classify 11 finger motions with the average accuracy of about 94 % across five amputees. | en_US |
dc.language.iso | en | en_US |
dc.subject | Extreme Learning Machine | en_US |
dc.subject | finger movement classification | en_US |
dc.subject | Transradial Amputees | en_US |
dc.subject | Swarm-wavelet based | en_US |
dc.title | Swarm-wavelet based Extreme Learning Machine for Finger Movement Classification on Transradial Amputees | en_US |
dc.type | Prosiding | en_US |
Files in this item
This item appears in the following Collection(s)
-
LSP-Conference Proceeding [1874]
Koleksi Artikel Yang Dimuat Dalam Prosiding