dc.contributor.author | Arika Indah Kristiana, Dafik | |
dc.date.accessioned | 2016-02-18T09:24:07Z | |
dc.date.available | 2016-02-18T09:24:07Z | |
dc.date.issued | 2016-02-18 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/73338 | |
dc.description.abstract | et $G$ be a simple graph
of order $p$ and size $q$. The graph $G$ is called an {\it
$(a,d)$-edge-antimagic total graph} if there exist a bijection $f :
V(G)\cup E(G) \to \{1,2,\dots,p+q\}$ such that the edge-weights,
$w(uv)=f(u)+f(v)+f(uv), uv \in E(G)$, form an arithmetic sequence
with first term $a$ and common difference $d$. Such a graph is
called {\it super} if the smallest possible labels appear on the
vertices. In this paper we study a super edge-antimagicness of
generalized shackle of fan of order five, denoted by
$gshack(F_5,e,n)$. The result shows that the graph $gshack(F_5,e,n)$
admits a super $(a,d)$-edge antimagic total labeling for some
feasible $d\le 2$. | en_US |
dc.description.sponsorship | CGANT UNEJ | en_US |
dc.language.iso | id | en_US |
dc.relation.ispartofseries | Semnas Mat dan Pembelajaran;5/11/2015 | |
dc.subject | Super edge antimagic total labeling, generalized shackle, fan | en_US |
dc.title | Pelabelan Total Super $(a,d)$-Sisi Antimagic pada Graf Shackle Fan Berorder 5 | en_US |
dc.type | Working Paper | en_US |