dc.contributor.author | Siska Binastuti., Dafik., Arif Fatahillah | |
dc.date.accessioned | 2016-02-18T08:49:48Z | |
dc.date.available | 2016-02-18T08:49:48Z | |
dc.date.issued | 2016-02-18 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/73333 | |
dc.description.abstract | Let $G$ be a simple graph of order $p$, size $q$ and face $r$. The
graph $G$ is called a super ($a,d$) - face antimagic total labeling
, if there exist a bijection $f:V(G)\cup E(G)\cup F(G)$ $\rightarrow
\{1,2,...,p+q+r\}$ such that the set of $s$-sided face weights,
$W_{s} = \{a_{s},a_{s}+d,a_{s}+2d,...,a_{s}+(r_{s}-1)d\}$ form an
arithmetic sequence with first term $a$,common difference $d$, where
$a$ and $d$ are positive integers $s$ and $r_{s}$ is the number of
$s$-sided faces. Such a graph is called super if the smallest
possible labels appear on the vertices. The type of Face Antimagic
Labeling is (1,1,1). In this paper we will study a Super $(a,d)$ -
Face Antimagic of Shackle ($C_5,e,n$) Graph and we will use it to
develop a polyalphabetic chyptosystem. | en_US |
dc.description.sponsorship | CGANT UNEJ | en_US |
dc.language.iso | id | en_US |
dc.relation.ispartofseries | Semnas Mat dan Pembelajaran;5/11/2015 | |
dc.subject | Super $(a,d)$-face antimagic total labeling, face antimagic labeling. | en_US |
dc.title | Pelabelan Total Super ($a,d$) - Face Antimagic dari Graf Shackle ($C_5,e,n$) | en_US |
dc.type | Working Paper | en_US |