Super (a,d)-{H}-Antimagic Total Selimut pada Amalgamasi Graf Roda untuk Pengembangan Kriptosistem Polyalphabetic

DSpace/Manakin Repository

Show simple item record

dc.contributor.author Novri Anggraeni., Dafik., Slamin
dc.date.accessioned 2016-02-18T08:46:03Z
dc.date.available 2016-02-18T08:46:03Z
dc.date.issued 2016-02-18
dc.identifier.uri http://repository.unej.ac.id/handle/123456789/73332
dc.description.abstract A graph $G(V,E)$ has a $\mathcal{H}$-covering if every edge in $E$ belongs to a subgraph of $G$ isomorphic to $\mathcal{H}$. An $(a,d)$-$\mathcal{H}$-antimagic total covering is a total labeling $\lambda$ from $V(G)\cup E(G)$ onto the integers $\{1,2,3,...,|V(G)\cup E(G)|\}$ with the property that, for every subgraph $A$ of $G$ isomorphic to $\mathcal{H}$ the $\sum{A}=\sum_{v\in{V(A)}}\lambda{(v)}+\sum_{e\in{E(A)}}\lambda{(e)}$ forms an arithmetic sequence. A graph that admits such a labeling is called an $(a,d)$-$\mathcal{H}$-antimagic total covering. In addition, if $\{\lambda{(v)}\}_{v\in{V}}=\{1,...,|V|\}$, then the graph is called $\mathcal{H}$-super antimagic graph. In this paper we study $\mathcal{H}$-covering of amalgamation of wheel graph and also to develop polyalphabetic chiper of cryptosystem from a secret massage. en_US
dc.description.sponsorship CGANT UNEJ en_US
dc.language.iso id en_US
dc.relation.ispartofseries Semnas Mat dan Pembelajaran;5/11/2015
dc.subject {H}-super antimagic total covering, wheel graph, and cryptosystem en_US
dc.title Super (a,d)-{H}-Antimagic Total Selimut pada Amalgamasi Graf Roda untuk Pengembangan Kriptosistem Polyalphabetic en_US
dc.type Working Paper en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Pencarian


Browse

My Account