dc.contributor.author Fia Cholidah., I. H. Agustin., Dafik dc.date.accessioned 2016-02-18T08:32:01Z dc.date.available 2016-02-18T08:32:01Z dc.date.issued 2016-02-18 dc.identifier.uri http://repository.unej.ac.id/handle/123456789/73330 dc.description.abstract All graph in this paper are finite, simple en_US and undirected. By $H'$-covering, we mean every edge in $E(G)$ belongs to at least one subgraph of $G$ isomorphic to a given graph $H$. A graph $G$ is said to be an $(a, d)$-${\mathcal {H}}$-antimagic total decomposition if there exist a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2,\dots ,|V (G)| + |E(G)|\}$ such that for all subgraphs $H'$ isomorphic to ${\mathcal {H}}$, the total ${\mathcal {H}}$-weights $w(H)= \sum_{v\in V(H')}f(v)+\sum_{e\in E(H')}f(v)$ form an arithmetic sequence $\{a, a + d, a +2d,...,a+(s - 1)d\}$, where $a$ and $d$ are positive integers and $s$ is the number of all subgraphs $H'$ isomorphic to ${\mathcal {H}}$. Such a labeling is called super if $f: V(G) \rightarrow \{1, 2,\dots ,|V (G)|\}$. In this paper, we study the problem that if a connected graph $G$ is super labelling $(a, d)-{\mathcal {H}}$- antimagic total decomposition, is the connective of the graph $G$ super $(a, d)$-${\mathcal {H}}$ - antimagic total decomposition as well? We will answer this question for the case when the graph $G$ is a shackle of $SF_4^3$ and ${\mathcal {H}}$=$F_4$ isomorphic to $H$.} dc.description.sponsorship CGANT UNEJ en_US dc.language.iso id en_US dc.relation.ispartofseries Semnas Mat dan Pembelajaran;5/11/2015 dc.subject Super edge antimagic total, comb graph, arithmetic sequence. en_US dc.title Pelabelan Super (a,d)- {H} Antimagic Total Dekomposisi pada Shakel dari Graf Kipas Konektif en_US dc.type Working Paper en_US
﻿