Show simple item record

dc.contributor.advisorDafik
dc.contributor.advisorSlamin
dc.contributor.authorMa'rufah, Sindy Putri Amalia
dc.date.accessioned2015-12-04T07:38:44Z
dc.date.available2015-12-04T07:38:44Z
dc.date.issued2015-12-04
dc.identifier.nim110210101062
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/66481
dc.description.abstractIlmu pengetahuan dan Teknologi semakin berkembang seiring dengan ke- majuan jaman. Berbagai macam Ilmu Pengetahuan yang telah berkembang pada saat ini. Salah satu contohnya yakni matematika. Berbagai macam cabang Ilmu di dalam matematika, salah satunya yaitu matematika diskrit yang di dalamnya terdapat pokok bahasan mengenai teori graf. Graf digunakan untuk merepre- sentasikan objek-objek diskrit dan hubungan antara objek-objek diskrit tersebut. Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan cacah yang disebut label. Terdapat berbagai jenis tipe pelabelan dalam graf, salah satunya adalah pelabelan total super(a; d)-sisi antimagic (SEATL), dimana a bobot sisi terkecil dan d nilai beda. Graf Roda Tank yang dinotasikan dengan TWm;n merupakan pengembangan dari graf cycle yang dihubungkan satu sama lainnya. Graf ini merupakan graf yang memiliki dua ekspan pada indeks m dan indeks n. Gabungan diskonektif graf Roda Tank merupakan gabungan saling lepas dari k duplikat graf Roda Tank dan dinotasikan dengan cTWm;n. Tujuan dari penelitian ini adalah untuk mengetahui apakah graf Roda Tank memiliki pelabelan total super (a; d)-sisi antimagic. Selain itu akan diterapkannya tahapan-tahapan yang terdapat pada Taksonomi Bloom hingga mencapai keterampilan berpikir tingkat tinggi. Metode yang digunakan dalam penelitian ini adalah deduktif aksiomatik, yaitu dengan menurunkan teorema tentang pelabelan graf , kemudian diterapkan dalam pelabelan total super (a; d)-sisi antimagic pada TWm;n dan cTWm;n. Hasil penelitian ini berupa lemma dan teorema baru mengenai pelabelan total super (a; d)-sisi antimagic TWm;n dan cTWm;n yaitu sebagai berikut: ix 1. Ada pelabelan titik (m + 2; 1)-sisi antimagic pada graf graf Roda Tank (Twm;n) jika n ¸ 8, n genap dan m ¸ 3 yang telah dibuktikan pada lemma 4.4.1. 2. Ada pelabelan total super (3mn¡m+1; 0), dan (mn+m+3; 2)-sisi antimagic pada graf Roda Tank Twm;n jika m ¸ 3 dan n ¸ 8, n genap. Pada kasus ini dibagi menjadi dua kasus yakni d = 0 dan d = 2 yang telah dibuktikan melalui pembuktian teorema 4.4.1.. 3. Ada pelabelan total super (2mn+2; 1)-sisi antimagic pada graf Roda Tank Twm;n jika m ¸ 3, m ganjil dan n ¸ 8, n genap yang telah dibuktikan melalui pembuktian teorema 4.4.2. 4. Ada pelabelan titik (mn+1 2 ; 1)-sisi antimagic pada gabungan Graf Roda Tank cTwm;n jika m ganjil, m ¸ 3, n = 6q + 4, qsembarang dan c ¸ 3, c ganjil, telah dibuktikan pada lemma 4.6.1. 5. Ada pelabelan total super ( 6mnk¡2mk¡k+3 2 ; 0), dan ( 2mnk+2mk+k+5 2 ; 2)-sisi an- timagic pada gabungan graf Roda Tank cTwm;n yang telah dibuktikan melalui pembuktian teorema 4.6.1. 6. Ada pelabelan total super (2mnk + 2; 1)-sisi antimagic pada gabungan graf Roda Tank cTwm;n yang telah dibuktikan melalui pembuktian teorema 4.6.2. Hasil penelitian diharapkan dapat memberikan konstribusi terhadap ber- kembangnya pengetahuan baru dalam bidang teori graf, khususnya dalam ruang lingkup pelabelan graf dan bisa digunakan sebagai acuan oleh peneliti lain untuk meneliti pelabelan total super (a; d)-sisi antimagic pada graf-graf khusus yang lain.en_US
dc.language.isoiden_US
dc.subjectBerpikir Tingkat Tinggi;en_US
dc.titlePelabelan Total Super (a,d)-Sisi Antimagic pada Graf Roda Tank dan Kaitannya dengan Keterampilan Berpikir Tingkat Tinggi;en_US
dc.typeUndergraduat Thesisen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record