Show simple item record

dc.contributor.authorDafik, Alfin Fajriatin, Kunti Miladiyah F
dc.date.accessioned2014-08-17T02:22:39Z
dc.date.available2014-08-17T02:22:39Z
dc.date.issued2012-06-01
dc.identifier.issnJOURNAL (ISSN 1411-5433)
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/58935
dc.description.abstractA graph G of order p and size q is called an (a, d)-edge- antimagic total if there exist a bijection f : V (G)U E(G) ---> {1,2,3,4,5,...., p+ q} such that the edge-weights, w(uv) = f(u) + f(v) + f(uv); uv in E(G), form an arithmetic sequence with first term a and common difference d. Such a graph G is called super if the smallest possible labels appear on the vertices. In this paper we study super (a, d)-edge-antimagic total properties of connected and disconnected of a well-defined mountain graph and also show a new concept of a permutation of an arithmetic sequence.en_US
dc.description.sponsorshipDP2M DIKTI 2012en_US
dc.language.isoenen_US
dc.publisherPMIPA FKIP Universitas Jemberen_US
dc.relation.ispartofseriesSAINTIFIKA;14 (1)
dc.subjectSEATL, Permutation, Arithmetic Sequence, Mountain Graphen_US
dc.titleSuper Antimagicness of a Well-defined Graphen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • MIPA [81]
    Abstract artikel jurnal yang dihasilkan oleh staf Unej (fulltext bagi yg open access)

Show simple item record