Show simple item record

dc.contributor.authorYuliani Setia Dewi
dc.date.accessioned2014-04-10T04:26:56Z
dc.date.available2014-04-10T04:26:56Z
dc.date.issued2014-04-10
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/56811
dc.description.abstractCorrelation between predictor variables (multicollinearity) become a problem in regression analysis. There are some methods to solve the problem. Each method has complexity. One of those methods is PLS. This research aims to describe the procedur of Estimation of PLS regression. PLS combine principal component analysis and multiple linear regression. PLS method estimates regression coefficient by selecting the number of component that is used in the model that has optimum Mean Square Error (minimum MSE). Optimal MSE is taken from cross validation.en_US
dc.language.isootheren_US
dc.relation.ispartofseriesMajalah Ilmiah Matematika dan Statistika;Volume 9, Juni 2009
dc.subjectPLS, multicollinearity, MSE, cross validationen_US
dc.titlePENDUGAAN KOEFISIEN REGRESI UNTUK DATA MENGANDUNG MULTIKOLINEARITAS MENGGUNAKAN PLSen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record