Show simple item record

dc.contributor.authorWijaya, K.
dc.contributor.authorSlamin
dc.contributor.authorMiller, Mirka
dc.date.accessioned2013-06-16T16:03:09Z
dc.date.available2013-06-16T16:03:09Z
dc.date.issued2011-01
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/127
dc.description.abstractA vertex irregular total k-labeling of a graph G is a function λ from both the vertex and the edge sets to {1,2,3,,k} such that for every pair of distinct vertices u and x, λ(u)+ Σλ(uv) ≠ λ(x)+ Σλ(xy). The integer k is called the total vertex irregularity strength, denoted by tvs(G), is the minimum value of the largest label over all such irregular assignments. In this paper, we prove that the total vertex irregularity strength of the Cocktail Party graph H_2,n, that is tvs(H_2,n)= 3 for n≥3.en_US
dc.language.isoenen_US
dc.publisherJurnal Ilmu Dasaren_US
dc.relation.ispartofseriesVol. 12 No. 2 (2011) 148 – 151.;
dc.subjectTotal vertex irregularity strength, cocktail party graphen_US
dc.titleOn Total Vertex Irregularity Strength Cocktail Party Graphsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

  • MIPA [81]
    Abstract artikel jurnal yang dihasilkan oleh staf Unej (fulltext bagi yg open access)

Show simple item record