• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In silico studies on quercetin, myricetin, and kaempferol in inhibiting TGF-β1 and galectin3 for cardiac fibrosis management

    Thumbnail
    View/Open
    FK_In silico studies on quercetin, myricetin, and.pdf (18.70Mb)
    Date
    2025-01-08
    Author
    SURYONO, Suryono
    AMIEN, Muhammad I.
    TOHARI, Achmad I.
    SAPUTRA, Antonius D.
    HIDAYAT, Muhammad RF.
    RAMADHAN, Hazbina F.
    Metadata
    Show full item record
    Abstract
    Cardiac fibrosis remains as the leading cause of death worldwide and is often associated with elevated levels of transforming growth factor-β 1 (TGF-β1) and galectin-3, making them potential therapeutic targets. Recent studies revealed that quercetin, myricetin, and kaempferol have the biological effect for several cardiovascular diseases. However, the investigation into this topic through molecular models and analysis remain unexplored. The aim of this study was to evaluate the potential effect of quercetin, myricetin, and kaempferol which targeted TGF-β1 and galectin-3. In this study, quercetin, myricetin, and kaempferol roled as the tested ligands. Subsequently, colchicine and native ligand acted as control ligands that were screened through molecular docking against TGF-β1 and galectin-3 using AutoDock tools to identify the potential inhibitor. The stability of ligandreceptor complexes was assessed through molecular dynamic (MD) simulations using NMAD. Absorption, Distribution, Metabolism, Excretion and toxicity (ADMET) prediction were also performed using ADMETlab 2.0. Molecular docking analysis revealed that quercetin, myricetin, and kaempferol exhibited strong binding affinity which are -8.9 kcal/mol, -8.5 kcal/mol, -7.6 kcal/mol respectively with TGF-β1, and -7.5 kcal/mol, -7.0 kcal/mol, -5.7 kcal/mol respectively with galetcin-3; low inhibition constant (Ki); and stable interaction with the active sites of TGF-β1 and galectin-3. MD simulations confirmed the stability and compactness of the ligand-receptor complexes. ADMET analysis also showed high Plasma Protein Binding (PPB) values (quercetin: 95%, myricetin: 92%, and kaempferol: 97%) and moderate clearance values (quercetin: 8.284%, myricetin, and 7.716%, kaempferol: 6.868%) for the tested compounds. In conclusion, the in silico analyses suggested that quercetin, myricetin, and kaempferol are promising for cardiac fibrosis therapies by inhibiting TGF-β1 and galectin-3
    URI
    https://repository.unej.ac.id/xmlui/handle/123456789/126156
    Collections
    • LSP-Jurnal Ilmiah Dosen [7386]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository