• Login
    View Item 
    •   Home
    • MASTER THESES (Koleksi Tesis)
    • MT-Mathematic
    • View Item
    •   Home
    • MASTER THESES (Koleksi Tesis)
    • MT-Mathematic
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analisis Risiko Kredit Perbankan dengan Pendekatan Naive Bayes dan Bayesian Network

    Thumbnail
    View/Open
    181820101002.pdf.pdf (3.812Mb)
    Date
    2022
    Author
    ANTIKA, Dwi Putri
    Metadata
    Show full item record
    Abstract
    Dalam proses kredit adakalanya mengalami kendala (macet). Kredit yang bermasalah terjadi karena debitur tidak memenuhi persyaratan sesuai perjanjian seperti pembayaran bunga, pengembalian pokok pinjaman, peningkatan margin deposit, peningkatan agunan, dan sebagainya. Pada penelitian kali ini, berfokus pada kasus risiko kredit tentang bagaimana suatu Bank memutuskan melakukan pemberian kredit kepada calon debitur dengan menggunakan metode classifier pada Machine Learning yaitu Naive Bayes dan Bayesian Network melalui model pengklasifikasian kelompok yang berpotensi macet atau tidak. Kedua model classifier tersebut akan dibandingkan dengan model yang diperoleh dari regresi Cox dengan evaluasi performa model diukur menggunakan Confusion Matrix, accuracy value, dan kurva ROC. Penelitian dilakukan pada 610 data yang diperoleh dari sebuah Bank di daerah Jawa Timur, data dipecah menjadi data training dan data testing yang selanjutnya digunakan pada tahap modelling. Hasil penilitian menunjukkan metode klasifikasi pada machine learning dapat menjadi salah satu cara efektif dalam memprediksi event (status kredit) dengan mengestimasi probabilitas suatu kejadian dari data training. Bernoulli naïve bayes pada penelitian ini memiliki nilai performa yang paling tinggi dibandingkan Gaussian Naïve Bayes dan Mulntinomial Naïve Bayes yakni sebesar 92%. Sementara itu, uji performa dari model Bayesian Network memiliki nilai akurasi sebesar 85,41% dalam prediksi penentuan nilai status kredit. Sementara itu, dengan menggunakan regrei Cox, status kredit secara signifikan paling besar dipengaruhi oleh pendapatan dan riwayat pinjaman debitur dengan riwayat kredit bermasalah atau macet berpengaruh 11,82 kali lebih besar dalam penentuan status kredit yang diberikan oleh pihak Bank sedangkan pendapatan yang rendah berpengaruh 0,97 kali lebih besar dalam keputusan pemberian status kredit macet.
    URI
    https://repository.unej.ac.id/xmlui/handle/123456789/113623
    Collections
    • MT-Mathematic [100]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository