• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Study of Machine Learning Algorithms to Measure The Feature Importance in Class-Imbalance Data Of Food Insecurity Cases in Indonesia

    Thumbnail
    View/Open
    FMIPA_A STUDY OF MACHINE LEARNING ALGORITHMS TO MEASURE.pdf (1.597Mb)
    Date
    2022-10-10
    Author
    DHARMAWAN, H.
    SARTONO, B.
    KURNIA, A.
    HADI, A. F.
    RAMADHANI, E.
    Metadata
    Show full item record
    Abstract
    The development of various machine learning algorithms on supervised models has become one of the issues in selecting a suitable algorithm. The black box of machine learning requires a technique that can be used to interpret the feature importance using the SHAP in order to obtain predictors. The class-imbalance problem in real cases is another challenge in improving the performance of minority class predictions. This study uses a food insecurity dataset, one of the SDG's important indicators to study to achieve zero hunger. The machine learning algorithms studied consisted of Random Forest, XGBoost, SVM, and NN. Meanwhile, the study of the effect of class imbalance used three treatments: without handling, SMOTE-N, and ADASYN-N. Twelve models are built based on a combination of four algorithms and three treatments to study the performance models and their feature importance. The SMOTE-N and ADASYN-N were able to increase the sensitivity value up to 0.48 units higher when compared
    URI
    https://repository.unej.ac.id/xmlui/handle/123456789/113467
    Collections
    • LSP-Jurnal Ilmiah Dosen [7410]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository