On Ramsey (mK2, P4)-Minimal Graphs
dc.contributor.author | TAUFIK, Asep Iqbal | |
dc.contributor.author | SILABAN, Denny Riama | |
dc.contributor.author | WIJAYA, Kristiana | |
dc.date.accessioned | 2023-02-23T02:22:24Z | |
dc.date.available | 2023-02-23T02:22:24Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://repository.unej.ac.id/xmlui/handle/123456789/112331 | |
dc.description.abstract | Let 𝐹, 𝐺, and 𝐻 be simple graphs. The notation 𝐹 → (𝐺, 𝐻) means that any red-blue coloring of all edges of 𝐹 will contain either a red copy of 𝐺 or a blue copy of 𝐻. Graph 𝐹 is a Ramsey (𝐺, 𝐻)-minimal if 𝐹 → (𝐺, 𝐻) but for each 𝑒 ∈ 𝐸(𝐹), (𝐹 − 𝑒) ↛ (𝐺, 𝐻). The set ℛ(𝐺, 𝐻) consists of all Ramsey (𝐺, 𝐻)-minimal graphs. Let 𝑚𝐾2 be matching with m edges and 𝑃𝑛 be a path on n vertices. In this paper, we construct all disconnected Ramsey minimal graphs, and found some new connected graphs in ℛ(3𝐾2 , 𝑃4 ). Furthermore, we also construct new Ramsey minimal graphs in ℛ((𝑚 + 1)𝐾2 , 𝑃4) from Ramsey minimal graphs in ℛ(𝑚𝐾2 , 𝑃4) for 𝑚 ≥ 4, by subdivision operation. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Atlantis Press | en_US |
dc.subject | Matching | en_US |
dc.subject | Path | en_US |
dc.subject | Ramsey minimal graphs | en_US |
dc.subject | Subdivision | en_US |
dc.title | On Ramsey (mK2, P4)-Minimal Graphs | en_US |
dc.type | Article | en_US |
Files in this item
This item appears in the following Collection(s)
-
LSP-Conference Proceeding [1874]
Koleksi Artikel Yang Dimuat Dalam Prosiding