Odd Harmonious Labeling of Pn ⊵ C4 and Pn ⊵ D2(C4)
dc.contributor.author | SARASVATI, Sabrina Shena | |
dc.contributor.author | HALIKIN, Ikhsanul | |
dc.contributor.author | WIJAYA, Kristiana | |
dc.date.accessioned | 2023-02-22T02:45:21Z | |
dc.date.available | 2023-02-22T02:45:21Z | |
dc.date.issued | 2021-12-31 | |
dc.identifier.uri | https://repository.unej.ac.id/xmlui/handle/123456789/112305 | |
dc.description.abstract | A graph G with q edges is said to be odd harmonious if there exists an injection τ : V (G) → Z2q so that the induced function τ ∗ : E(G) → {1, 3, . . . , 2q − 1} defined by τ ∗ (xy) = τ (x) + τ (y) is a bijection. Here we show that graphs constructed by edge comb product of path Pn and cycle on four vertices C4 or shadow of a cycle of order four D2(C4) are odd harmonious. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Indonesian Journal of Combinatorics | en_US |
dc.subject | Odd harmonious labeling | en_US |
dc.subject | edge comb product | en_US |
dc.subject | path | en_US |
dc.subject | cycle | en_US |
dc.subject | shadow graph | en_US |
dc.title | Odd Harmonious Labeling of Pn ⊵ C4 and Pn ⊵ D2(C4) | en_US |
dc.type | Article | en_US |
Files in this item
This item appears in the following Collection(s)
-
LSP-Jurnal Ilmiah Dosen [7323]
Koleksi Jurnal Ilmiah Dosen