Show simple item record

dc.contributor.authorHALIKIN, Ikhsanul
dc.contributor.authorSAVITRI, Ade Rizky
dc.contributor.authorWIJAYA, Kristiana
dc.date.accessioned2023-02-22T01:33:19Z
dc.date.available2023-02-22T01:33:19Z
dc.date.issued2020-03-03
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/112290
dc.description.abstractLet k be a natural number and G be a simple graph. An inclusive d-distance vertex irregular labelling of a graph G is a function 𝜆: 𝑉(𝐺) ⟶ {1,2, … , 𝑘} so that the weights at each vertex are different. Let v be a vertex of G. The weight of v ∈V(G), denoted by wt(v), is the sum of the label of v and all vertex labels up to distance 1 from v. An inclusive 1-distance vertex irregularity strength of G, denoted by 𝑑𝑖𝑠 ̂ (𝐺) is the minimum k for the existence of an inclusive 1-distance vertex irregular labelling of a G. Here, we find the exact value of an inclusive 1-distance vertex irregularity strength of a firecracker, a broom, anda banana tree.en_US
dc.language.isoenen_US
dc.publisherProceedings of the International Conference on Mathematics and Islamen_US
dc.subjectInclusive 1-Distance Vertex Irregular Labellingen_US
dc.subjectInclusive 1-Distance Vertex Irregularity Strengthen_US
dc.subjectFirecrackeren_US
dc.subjectBroomen_US
dc.subjectBanana Treeen_US
dc.titleOn inclusive 1-Distance Vertex Irregularity Strength of Firecracker, Broom, and Banana Treeen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record