• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Conference Proceeding
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Conference Proceeding
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Molecular Modeling of Anti-Microbacterial Agent by QSAR Study of Diiodocoumarin Derivatives

    Thumbnail
    View/Open
    FT_PROSIDING_Molecular Modeling of Anti-Microbacterial Agent by QSAR_ISTIQOMAH RAHMAWATI.pdf (584.2Kb)
    Date
    2020-10-26
    Author
    RAHMAWATI, Istiqomah
    AMINI, Helda Wika
    PALUPI, Bekti
    RIZKIANA, Meta Fitri
    Metadata
    Show full item record
    Abstract
    Coumarins and their derivatives have biological activities such as anti-microbial, anticancer, antioxidant and anti-HIV properties. Molecular modeling using Quantitative Structure and Activity Relationship (QSAR) has been performed on a series of diiodocoumarin derivatives as effective antimicrobial agent. This research focus on a set of experimetally inhibition-zone diameter (mm/mg sample) value data of 5diiodocoumarin derivatives, that is 6,8-diiodocoumarin-3-carboxylate, 6,8-diiodocoumarin-3-carboxylic acid, 6,8-diiodocoumarin-3-carbonylchloride, N-(4-(2-Hydroxyethyl)phenyl)-6,8-diiodocoumarin-3-carboxamide, and N-(4-Hydroxyphenyl)-6,8-diiodocoumarin-3-carboxamide. The mathematical method multi linear regression calculation was used to build the QSAR model. QSAR analysis was employed on fitting subset using log (1/inhibition-zone diameter) as dependent variable and atomic net charges, dipole moment and partition coefficient in n-octanol/water as independent variables. The parameterized Model number 3 (PM3) method was carried out to calculate the quantum chemical descriptors, chosen to represent the electronic descriptors of molecular structures. The relationship between log (1/inhibition-zone diameter) and the descriptors was described by resulted QSAR model. The resulted QSAR model for caffeic acid derivatives as anti-microbial is presented below: 8.051+32.24C5+27.24O7+0.021logPR=1;R2=0.999;SE=0.008;Sig=0.038 QSAR model for diiodocoumarin derivatives showed partition coefficient of n-octanol/water and atom charge in C5 and O7 gave significant effect as descriptors to the anti-microbial activity.N-(4-(2-Hydroxyethyl)phenyl)-6,8-diiodocoumarin-3carboxamide and N-(4-Hydroxyphenyl)-6,8-diiodocoumarin-3-carboxamide have higher anti-microbial activity because the presence of hydroxyphenylgroup increases the electron density value of O7 and C5. The calculated PRESS (Predicted Residual Error Sum of Square) value was 7.13E-05 which indicates the calculated log (1/inhibition-zone diameter) using QSAR Hansch Model of diiodocoumarinderivativesis similar with experimental data.
    URI
    http://repository.unej.ac.id/handle/123456789/104829
    Collections
    • LSP-Conference Proceeding [1877]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository