dc.contributor.author | ADAWIYAH, Robiatul | |
dc.contributor.author | DAFIK, Dafik | |
dc.contributor.author | PRIHANDINI, Rafiantika Megahnia | |
dc.contributor.author | ALBIRRI, Ermita Rizki | |
dc.contributor.author | AGUSTIN, Ika Hesti | |
dc.contributor.author | ALFARISI, Ridho | |
dc.date.accessioned | 2021-04-15T02:06:21Z | |
dc.date.available | 2021-04-15T02:06:21Z | |
dc.date.issued | 2019-04-01 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/104078 | |
dc.description.abstract | Let G be a simple graph. A set of vertices, called V (G) and a set of edges, called
E(G) are two sets which form graph G. W is a local adjacency resolving set of G if for every
two distinct vertices x, y and x adjacent with y then rA(x|W) 6= rA(y|W). A minimum local
adjacency resolving set in G is called local adjacency metric basis. The cardinality of vertices
in the basis is a local adjacency metric dimension of G (dimA,l(G)). We present the exact value
of local adjacency metric dimension of m-splitting complete and bipartite graphs | en_US |
dc.language.iso | en | en_US |
dc.publisher | IOP Conf. Series: Journal of Physics: Conf. Series | en_US |
dc.subject | The Local (Adjacency) Metric Dimension of Split Related Complete Graph | en_US |
dc.title | The Local (Adjacency) Metric Dimension of Split Related Complete Graph | en_US |
dc.type | Article | en_US |
dc.identifier.kodeprodi | KODEPRODI0210191#Pendidikan Matematika | |
dc.identifier.nidn | NIDN0031079201 | |
dc.identifier.nidn | NIDN0001016827 | |
dc.identifier.nidn | NIDN0005108905 | |
dc.identifier.nidn | NIDN002702901 | |
dc.identifier.nidn | NIDN00001088401 | |
dc.identifier.nidn | NIDN0007119401 | |