Show simple item record

dc.contributor.authorADAWIYAH, Robiatul
dc.contributor.authorDAFIK, Dafik
dc.contributor.authorPRIHANDINI, Rafiantika Megahnia
dc.contributor.authorALBIRRI, Ermita Rizki
dc.contributor.authorAGUSTIN, Ika Hesti
dc.contributor.authorALFARISI, Ridho
dc.date.accessioned2021-04-15T02:06:21Z
dc.date.available2021-04-15T02:06:21Z
dc.date.issued2019-04-01
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/104078
dc.description.abstractLet G be a simple graph. A set of vertices, called V (G) and a set of edges, called E(G) are two sets which form graph G. W is a local adjacency resolving set of G if for every two distinct vertices x, y and x adjacent with y then rA(x|W) 6= rA(y|W). A minimum local adjacency resolving set in G is called local adjacency metric basis. The cardinality of vertices in the basis is a local adjacency metric dimension of G (dimA,l(G)). We present the exact value of local adjacency metric dimension of m-splitting complete and bipartite graphsen_US
dc.language.isoenen_US
dc.publisherIOP Conf. Series: Journal of Physics: Conf. Seriesen_US
dc.subjectThe Local (Adjacency) Metric Dimension of Split Related Complete Graphen_US
dc.titleThe Local (Adjacency) Metric Dimension of Split Related Complete Graphen_US
dc.typeArticleen_US
dc.identifier.kodeprodiKODEPRODI0210191#Pendidikan Matematika
dc.identifier.nidnNIDN0031079201
dc.identifier.nidnNIDN0001016827
dc.identifier.nidnNIDN0005108905
dc.identifier.nidnNIDN002702901
dc.identifier.nidnNIDN00001088401
dc.identifier.nidnNIDN0007119401


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record