• Login
    View Item 
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    •   Home
    • LECTURER SCIENTIFIC PUBLICATION (Publikasi Ilmiah)
    • LSP-Jurnal Ilmiah Dosen
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluation of Feature Extraction Techniques and Classifiers for Finger Movement Recognition using Surface Electromyography Signal

    Thumbnail
    View/Open
    F. T_Jurnal_Khairul Anam_Evaluation of feature extraction.pdf (4.303Mb)
    Date
    2019-02-12
    Author
    Phukpattaranont, Pornchai
    Thongpanja, Sirinee
    Anam, Khairul
    Al-Jumaily, Adel
    Limsakul, Chusak
    Metadata
    Show full item record
    Abstract
    Electromyography (EMG) in a bio-driven system is used as a control signal, for driving a hand prosthesis or other wearable assistive devices. Processing to get informative drive signals involves three main modules: preprocessing, dimensionality reduction, and classification. This paper proposes a system for classifying a six-channel EMG signal from 14 finger movements. A feature vector of 66 elements was determined from the six-channel EMG signal for each finger movement. Subsequently, various feature extraction techniques and classifiers were tested and evaluated. We compared the performance of six feature extraction techniques, namely principal component analysis (PCA), linear discriminant analysis (LDA), uncorrelated linear discriminant analysis (ULDA), orthogonal fuzzy neighborhood discriminant analysis (OFNDA), spectral regression linear discriminant analysis (SRLDA), and spectral regression extreme learning machine (SRELM). In addition, we also evaluated the performance of seven classifiers consisting of support vector machine (SVM), linear classifier (LC), naive Bayes (NB), k-nearest neighbors (KNN), radial basis function extreme learning machine (RBF-ELM), adaptive wavelet extreme learning machine (AW-ELM), and neural network (NN). The results showed that the combination of SRELM as the feature extraction technique and NN as the classifier yielded the best classification accuracy of 99%, which was significantly higher than those from the other combinations tested.
    URI
    http://repository.unej.ac.id/handle/123456789/89597
    Collections
    • LSP-Jurnal Ilmiah Dosen [7403]

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    UPA-TIK Copyright © 2024  Library University of Jember
    Contact Us | Send Feedback

    Indonesia DSpace Group :

    University of Jember Repository
    IPB University Scientific Repository
    UIN Syarif Hidayatullah Institutional Repository