Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/99370
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKUSUMAWARDANI, Intan-
dc.contributor.authorKRISTIANA, Arika Indah-
dc.contributor.authorDAFIK, Dafik-
dc.contributor.authorALFARISI, Ridho-
dc.date.accessioned2020-06-25T04:32:41Z-
dc.date.available2020-06-25T04:32:41Z-
dc.date.issued2019-12-01-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/99370-
dc.description.abstractAll graphs in this paper is connected and simple. Let ( ) be a connected and simple graph with vertices set and edge set . A bijection function * | ( )|+ is called an edge antimagic vertex labelling if for every ( ), the edge weight ( ) ( ) ( ) are all different. An edge antimagic labeling can generate a rainbow edge antimagic coloring if there is a rainbow path between every pair of vertices. The rainbow edge antimagic connection number of graph , denoted by ( ) is the smallest number of colors that are needed in order to make rainbow connected under the assignment of edge antimagic labelling. In this paper, we will study the existence of rainbow antimagic coloring its connection number of some wheel related graphs. We have found the values of the rainbow antimagic connection of flower graph and gear graph.en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Academic and Applied Research (IJAAR), Vol.3 Issue 12, December – 2019, Pages: 60-64en_US
dc.subjectrainbow antimagic connection numberen_US
dc.subjectfloweren_US
dc.subjectgearen_US
dc.titleOn The Rainbow Antimagic Connection Number of Some Wheel Related Graphsen_US
dc.typeArticleen_US
dc.identifier.kodeprodiKODEPRODI0210101#Pendidikan Matematika-
dc.identifier.nidnNIDN0001016827-
dc.identifier.nidnNIDN0007119401-
dc.identifier.nidnNIDN0002057606-
Appears in Collections:LSP-Jurnal Ilmiah Dosen

Files in This Item:
File Description SizeFormat 
F. KIP_Jurnal_Arika Indah K_On The Rainbow Antimagic Connection Number of Some Wheel.pdf309.52 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.