Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/87571
Title: On Super Local Antimagic Total Edge Coloring of Some Wheel Related Graphs
Authors: Agustin, Ika Hesti
Alfarisi, Ridho
Dafik, Dafik
Kristiana, Arika Indah
Prihandini, Rafiantika Megahnia
Kurniawati, Elsa Yuli
Keywords: Super Local Antimagic
Total Edge Coloring
Wheel Related Graphs
Issue Date: 29-Oct-2018
Abstract: Let G be a connected graph, let V(G) be the vertex set of graph G, and let E(G) be the edge set of graph G. Thus, the bijective function f : V(G) ∪ E(G) −→ {1, 2, 3, ..., |V(G)| + |E(G)|} is called a local antimagic total edge labeling if for two adjacent edges e 1 and e 2 , w t (e 1 ) w t (e 2 ), where for e = uv ∈ G, w (e) = f (u) + f (v) + f (uv). Thus, the local antimagic total edge labeling by induces a proper edge coloring of a graph G if each edge e is assigned the color w t (e). The local antimagic total edge coloring, denoted by γ leat t (G) is the minimum number of colors taken over all colorings induced by local antimagic total edge labelings of a graph G. In this research, we determine the local super antimagic total edge coloring of some wheel related graph including fan, wheel, gear and friendship graph.
Description: AIP Conf. Proc. 2014, 020088-1–020088-7; https://doi.org/10.1063/1.5054492
URI: http://repository.unej.ac.id/handle/123456789/87571
ISBN: 978-0-7354-1730-4
Appears in Collections:LSP-Conference Proceeding

Files in This Item:
File Description SizeFormat 
F. MIPA_Prosiding_Ika Hesty A_On Super Local Antimagic.pdf1.78 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.