Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/84429
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarsidi, Marsidi-
dc.contributor.authorDafik, Dafik-
dc.contributor.authorAgustin, Ika Hesti-
dc.contributor.authorAlfarisi, Ridho-
dc.date.accessioned2018-02-28T03:53:12Z-
dc.date.available2018-02-28T03:53:12Z-
dc.date.issued2018-02-28-
dc.identifier.issn2086-0382-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/84429-
dc.descriptionCAUCHY – JURNAL MATEMATIKA MURNI DAN APLIKASI Volume 4(3) (2016), Pages 125-130en_US
dc.description.abstractLet G be a simple, nontrivial, and connected graph. 𝑊 = {𝑤 } is a representation of an ordered set of k distinct vertices in a nontrivial connected graph G. The metric code of a vertex v, where 𝑣 ∈ G, the ordered 𝑟(𝑣|𝑊) = (𝑑 ( 𝑣, 𝑤 1 ) , 𝑑 ( 𝑣, 𝑤 2 ) , . . . , 𝑑 ( 𝑣, 𝑤 𝑘 1 , 𝑤 2 , 𝑤 3 , … , 𝑤 𝑘 ) ) of k-vector is representations of v with respect to W, where 𝑑(𝑣, 𝑤 ) is the distance between the vertices v and w i for 1≤ i ≤k. Furthermore, the set W is called a local resolving set of G if 𝑟 ( 𝑢 | 𝑊 ) ≠ 𝑟(𝑣|𝑊) for every pair u,v of adjacent vertices of G. The local metric dimension ldim(G) is minimum cardinality of W. The local metric dimension exists for every nontrivial connected graph G. In this paper, we study the local metric dimension of line graph of special graphs , namely 𝑖 path, cycle, generalized star, and wheel. The line graph L(G) of a graph G has a vertex for each edge of G, and two vertices in L(G) are adjacent if and only if the corresponding edges in G have a vertex in common.en_US
dc.language.isoenen_US
dc.subjectmetric dimensionen_US
dc.subjectlocal metric dimension numberen_US
dc.subjectline graphen_US
dc.subjectresolving seten_US
dc.titleOn The Local Metric Dimension of Line Graph of Special Graphen_US
dc.typeArticleen_US
Appears in Collections:LSP-Jurnal Ilmiah Dosen

Files in This Item:
File Description SizeFormat 
F. MIPA_Jurnal_Ika Hesti_On The Local Metric.pdf2.66 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.