Please use this identifier to cite or link to this item:
https://repository.unej.ac.id/xmlui/handle/123456789/82055
Title: | Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees |
Authors: | Anam, Khairul Al-Jumaily, Adel |
Keywords: | Classification Myoelectric pattern recognition Electromyography (EMG) Extreme learning machine (ELM) Amputee |
Issue Date: | 11-Oct-2017 |
Abstract: | The success of myoelectric pattern recognition (M-PR) mostly relies on the features extracted and classifier employed. This paper proposes and evaluates a fast classifier, extreme learning machine (ELM), to classify individual and combined finger movements on amputees and non-amputees. ELM is a single hidden layer feed-forward network (SLFN) that avoids iterative learning by determining input weights randomly and output weights analytically. Therefore, it can accelerate the training time of SLFNs. In addition to the classifier evaluation, this paper evaluates various feature combinations to improve the performance of M-PR and investigate some feature projections to improve the class separability of the features. Different from other studies on the implementation of ELM in the myoelectric controller, this paper presents a complete and thorough investigation of various types of ELMs including the node-based and kernel-based ELM. Furthermore, this paper provides comparisons of ELMs and other well-known classifiers such as linear discriminant analysis (LDA), k-nearest neighbour (kNN), support vector machine (SVM) and least-square SVM (LS-SVM). The experimental results show the most accurate ELM classifier is radial basis function ELM (RBF-ELM). The comparison of RBF-ELM and other well-known classifiers shows that RBF-ELM is as accurate as SVM and LS-SVM but faster than the SVM family; it is superior to LDA and kNN. The experimental results also indicate that the accuracy gap of the M-PR on the amputees and nonamputees is not too much with the accuracy of 98.55% on amputees and 99.5% on the non-amputees using six electromyography (EMG) channels. |
Description: | Journal Neural Networks 85 (2017) 51–68 |
URI: | http://repository.unej.ac.id/handle/123456789/82055 |
ISSN: | 0893-6080 |
Appears in Collections: | LSP-Jurnal Ilmiah Dosen |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
F. T_Jurnal_Khairul Anam_Evaluation.pdf | 1.29 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.