Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/809
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBalbuena, C.-
dc.contributor.authorBarker, E.-
dc.contributor.authorDas, K.C.-
dc.contributor.authorLin, Y.-
dc.contributor.authorMiller, M.-
dc.contributor.authorRyan, J.-
dc.contributor.authorSlamin-
dc.contributor.authorSugeng, K.A.-
dc.contributor.authorTkac, M.-
dc.date.accessioned2013-08-22T04:15:34Z-
dc.date.available2013-08-22T04:15:34Z-
dc.date.issued2006-
dc.identifier.issn0012-365X-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/809-
dc.description.abstractLet G=(V ,E) be a finite graph, where |V |=n2 and |E|=e1.A vertex-magic total labeling is a bijection from V ∪E to the set of consecutive integers {1, 2, . . . , n + e} with the property that for every v ∈ V , (v) +w∈N(v) (vw) = h for some constant h. Such a labeling is strong if (V )={1, 2, . . . , n}. In this paper, we prove first that the minimum degree of a strongly vertex-magic graph is at least two. Next, we show that if 2e10n2 − 6n + 1, then the minimum degree of a strongly vertex-magic graph is at least three. Further, we obtain upper and lower bounds of any vertex degree in terms of n and e. As a consequence we show that a strongly vertex-magic graph is maximally edge-connected and hamiltonian if the number of edges is large enough. Finally, we prove that semi-regular bipartite graphs are not strongly vertex-magic graphs, and we provide strongly vertex-magic total labeling of certain families of circulant graphs.en_US
dc.language.isoen_USen_US
dc.publisherDiscrete Mathematicsen_US
dc.relation.ispartofseriesVol. 306 (2006) pp. 539-551.;-
dc.subjectvertex magicen_US
dc.subjectdegreeen_US
dc.titleOn the degrees of a strongly vertex-magic graphen_US
dc.typeArticleen_US
Appears in Collections:MIPA

Files in This Item:
File Description SizeFormat 
Pages from DM_306_Degree_VM_2006.pdf129.09 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.