Please use this identifier to cite or link to this item:
https://repository.unej.ac.id/xmlui/handle/123456789/788
Title: | Vertex-magic total labelings of disconnected graphs |
Authors: | Slamin Prihandoko, A.C. Setiawan, T.B. Rosita, Fety Shaleh, B. |
Keywords: | vertex magic total labeling disconnected graphs |
Issue Date: | 2006 |
Publisher: | Journal of Prime Research in Mathematics |
Series/Report no.: | Vol. 2 (2006) pp. 147 - 156; |
Abstract: | Let $G$ be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$ and let $e=\vert E(G) \vert$ and $v=\vert V(G) \vert$. A one-to-one map $\lambda$ from $V\cup E$ onto the integers $\{ 1,2, ..., v+e \}$ is called {\it vertex magic total labeling} if there is a constant $k$ so that for every vertex $x$, \[ \lambda (x) \ +\ \sum \lambda (xy)\ =\ k \] where the sum is over all vertices $y$ adjacent to $x$. Let us call the sum of labels at vertex $x$ the {\it weight} $w_{\lambda}(x)$ of the vertex under labeling $\lambda$; we require $w_{\lambda}(x)=k$ for all $x$. The constant $k$ is called the {\it magic constant} for $\lambda$. In this paper, we present the vertex magic total labelings of disconnected graph, in particular, two copies of isomorphic generalized Petersen graphs $2P(n,m)$, disjoint union of two non-isomorphic suns $S_m \cup S_{n}$ and $t$ copies of isomorphic suns $tS_n$. |
URI: | http://repository.unej.ac.id/handle/123456789/788 |
Appears in Collections: | MIPA |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Pages from JPRM_2_Magic_Disc_2006.pdf | 127.2 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.