Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/788
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSlamin-
dc.contributor.authorPrihandoko, A.C.-
dc.contributor.authorSetiawan, T.B.-
dc.contributor.authorRosita, Fety-
dc.contributor.authorShaleh, B.-
dc.date.accessioned2013-08-20T02:37:27Z-
dc.date.available2013-08-20T02:37:27Z-
dc.date.issued2006-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/788-
dc.description.abstractLet $G$ be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$ and let $e=\vert E(G) \vert$ and $v=\vert V(G) \vert$. A one-to-one map $\lambda$ from $V\cup E$ onto the integers $\{ 1,2, ..., v+e \}$ is called {\it vertex magic total labeling} if there is a constant $k$ so that for every vertex $x$, \[ \lambda (x) \ +\ \sum \lambda (xy)\ =\ k \] where the sum is over all vertices $y$ adjacent to $x$. Let us call the sum of labels at vertex $x$ the {\it weight} $w_{\lambda}(x)$ of the vertex under labeling $\lambda$; we require $w_{\lambda}(x)=k$ for all $x$. The constant $k$ is called the {\it magic constant} for $\lambda$. In this paper, we present the vertex magic total labelings of disconnected graph, in particular, two copies of isomorphic generalized Petersen graphs $2P(n,m)$, disjoint union of two non-isomorphic suns $S_m \cup S_{n}$ and $t$ copies of isomorphic suns $tS_n$.en_US
dc.language.isoen_USen_US
dc.publisherJournal of Prime Research in Mathematicsen_US
dc.relation.ispartofseriesVol. 2 (2006) pp. 147 - 156;-
dc.subjectvertex magic total labelingen_US
dc.subjectdisconnected graphsen_US
dc.titleVertex-magic total labelings of disconnected graphsen_US
dc.typeArticleen_US
Appears in Collections:MIPA

Files in This Item:
File Description SizeFormat 
Pages from JPRM_2_Magic_Disc_2006.pdf127.2 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.