Please use this identifier to cite or link to this item:
https://repository.unej.ac.id/xmlui/handle/123456789/73339
Title: | Super (a,d)-edge Antimagic Total Labeling of\\ Shackle ($F_6, B_2, n$) for Developing a Polyalphabetic Cryptosystem |
Authors: | Arnasyitha Yulianti Soelistya., Dafik., Arif Fatahillah |
Keywords: | super edge antimagic total, polyalphabetic cryptosystem, graph shackle ($F_6, B_2, n$) |
Issue Date: | 18-Feb-2016 |
Series/Report no.: | Semnas Mat dan Pembelajaran;5/11/2015 |
Abstract: | A graph $G$ of order $p$ and size $q$ is called an $(a,d)$-edge-antimagic total if there exist a bijection $f : V(G)\cup E(G) \to \{1,2,\dots,p+q\}$ such that the edge-weights, $w(uv)=f(u)+f(v)+f(uv), uv \in E(G)$, form an arithmetic sequence with first term $a$ and common difference $d$. Such a graph is called super if the smallest possible labels appear on the vertices. In this paper we study a super edge-antimagic total labeling of Graph Shackle ($F_6, B_2, n$) and we will use it to develop a polyalphabetic cryptosystem. |
URI: | http://repository.unej.ac.id/handle/123456789/73339 |
Appears in Collections: | MIPA |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Arnasytha YS Kombinasi.pdf | 165.27 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.