Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/73339
Title: Super (a,d)-edge Antimagic Total Labeling of\\ Shackle ($F_6, B_2, n$) for Developing a Polyalphabetic Cryptosystem
Authors: Arnasyitha Yulianti Soelistya., Dafik., Arif Fatahillah
Keywords: super edge antimagic total, polyalphabetic cryptosystem, graph shackle ($F_6, B_2, n$)
Issue Date: 18-Feb-2016
Series/Report no.: Semnas Mat dan Pembelajaran;5/11/2015
Abstract: A graph $G$ of order $p$ and size $q$ is called an $(a,d)$-edge-antimagic total if there exist a bijection $f : V(G)\cup E(G) \to \{1,2,\dots,p+q\}$ such that the edge-weights, $w(uv)=f(u)+f(v)+f(uv), uv \in E(G)$, form an arithmetic sequence with first term $a$ and common difference $d$. Such a graph is called super if the smallest possible labels appear on the vertices. In this paper we study a super edge-antimagic total labeling of Graph Shackle ($F_6, B_2, n$) and we will use it to develop a polyalphabetic cryptosystem.
URI: http://repository.unej.ac.id/handle/123456789/73339
Appears in Collections:MIPA

Files in This Item:
File Description SizeFormat 
Arnasytha YS Kombinasi.pdf165.27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.