Please use this identifier to cite or link to this item:
https://repository.unej.ac.id/xmlui/handle/123456789/73336
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Diana Hardiyantik., Ika Hesti A., Dafik | |
dc.date.accessioned | 2016-02-18T09:23:31Z | |
dc.date.available | 2016-02-18T09:23:31Z | |
dc.date.issued | 2016-02-18 | |
dc.identifier.uri | http://repository.unej.ac.id/handle/123456789/73336 | |
dc.description.abstract | Let $G$ be a finite, simple and undirected graph. A graph $G$ is called to be an $(a, d)$-$H$-antimagic total covering if there exist a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2,\dots ,|V (G)| + |E(G)|\}$ such that for all subgraphs $H'$ isomorphic to $H$, the total $H$-weights $w(H)= \sum_{v\in V(H')}f(v)+\sum_{e\in E(H')}f(v)$ form an arithmetic sequence $\{a, a + d, a +2d,...,a+(t - 1)d\}$, where $a$ and $d$ are positive integers and $t$ is the number of all subgraphs $H'$ isomorphic to $H$. Such a labeling is called super if $f: V(G) \rightarrow \{1, 2,\dots ,|V (G)|\}$. In this paper we study a super $(a, d)$-$C_4$-antimagic total covering of connected Semi Jahangir graph denoted by $SJ_n$. | en_US |
dc.description.sponsorship | CGANT UNEJ | en_US |
dc.language.iso | id | en_US |
dc.relation.ispartofseries | Semnas Mat dan Pembelajaran;5/11/2015 | |
dc.subject | it super a,d-mathcaH, total covering,Semi Jahangir graph | en_US |
dc.title | Super (a,d)-H-Antimagic Total Covering of Connected Semi Jahangir Graph | en_US |
dc.type | Working Paper | en_US |
Appears in Collections: | MIPA |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Diana Hardiyantik Kombinasi.pdf | 178.94 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.