Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/73336
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDiana Hardiyantik., Ika Hesti A., Dafik
dc.date.accessioned2016-02-18T09:23:31Z
dc.date.available2016-02-18T09:23:31Z
dc.date.issued2016-02-18
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/73336
dc.description.abstractLet $G$ be a finite, simple and undirected graph. A graph $G$ is called to be an $(a, d)$-$H$-antimagic total covering if there exist a bijective function $f: V(G) \cup E(G) \rightarrow \{1, 2,\dots ,|V (G)| + |E(G)|\}$ such that for all subgraphs $H'$ isomorphic to $H$, the total $H$-weights $w(H)= \sum_{v\in V(H')}f(v)+\sum_{e\in E(H')}f(v)$ form an arithmetic sequence $\{a, a + d, a +2d,...,a+(t - 1)d\}$, where $a$ and $d$ are positive integers and $t$ is the number of all subgraphs $H'$ isomorphic to $H$. Such a labeling is called super if $f: V(G) \rightarrow \{1, 2,\dots ,|V (G)|\}$. In this paper we study a super $(a, d)$-$C_4$-antimagic total covering of connected Semi Jahangir graph denoted by $SJ_n$.en_US
dc.description.sponsorshipCGANT UNEJen_US
dc.language.isoiden_US
dc.relation.ispartofseriesSemnas Mat dan Pembelajaran;5/11/2015
dc.subjectit super a,d-mathcaH, total covering,Semi Jahangir graphen_US
dc.titleSuper (a,d)-H-Antimagic Total Covering of Connected Semi Jahangir Graphen_US
dc.typeWorking Paperen_US
Appears in Collections:MIPA

Files in This Item:
File Description SizeFormat 
Diana Hardiyantik Kombinasi.pdf178.94 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.