Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/58935
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDafik, Alfin Fajriatin, Kunti Miladiyah F-
dc.date.accessioned2014-08-17T02:22:39Z-
dc.date.available2014-08-17T02:22:39Z-
dc.date.issued2012-06-01-
dc.identifier.issnJOURNAL (ISSN 1411-5433)-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/58935-
dc.description.abstractA graph G of order p and size q is called an (a, d)-edge- antimagic total if there exist a bijection f : V (G)U E(G) ---> {1,2,3,4,5,...., p+ q} such that the edge-weights, w(uv) = f(u) + f(v) + f(uv); uv in E(G), form an arithmetic sequence with first term a and common difference d. Such a graph G is called super if the smallest possible labels appear on the vertices. In this paper we study super (a, d)-edge-antimagic total properties of connected and disconnected of a well-defined mountain graph and also show a new concept of a permutation of an arithmetic sequence.en_US
dc.description.sponsorshipDP2M DIKTI 2012en_US
dc.language.isoenen_US
dc.publisherPMIPA FKIP Universitas Jemberen_US
dc.relation.ispartofseriesSAINTIFIKA;14 (1)-
dc.subjectSEATL, Permutation, Arithmetic Sequence, Mountain Graphen_US
dc.titleSuper Antimagicness of a Well-defined Graphen_US
dc.typeArticleen_US
Appears in Collections:MIPA

Files in This Item:
File Description SizeFormat 
5Super Antimagicness of A Well-defined Graphv OKOK.pdf1.33 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.