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Abstract: A graph G of order p and size ¢ is called an (a,d)-edge-
antimagic total if there exist a bijection f : V(G)UE(G) — {1,2,...,p+
q} such that the edge-weights, w(uv) = f(u) + f(v) + f(uv),uv € E(G),
form an arithmetic sequence with first term a and common difference
d. Such a graph G is called super if the smallest possible labels appear
on the vertices. In this paper we study super (a,d)-edge-antimagic to-
tal properties of connected and disconnected of a well-defined mountain
graph and also show a new concept of a permutation of an arithmetic
sequence.

Key Words : SEATL, Permutation, Arithmetic Sequence, Mountain
Graph.

Introduction

The labeling of graph is the one of graph theory branch which is widely
studied by a research group in combinatoric. Graph labelings provide use-
ful mathematical models for a wide range of applications, such as radar and
communication network addressing systems and circuit design, bioinformat-
ics, various coding theory problems, automata, x-ray crystallography and data
security. More detailed discussions about applications of graph labelings can
be found in Bloom and Golomb’s papers [4] and [5].

An (a,d)-edge-antimagic total labeling on a graph G is a bijective function
f:V(G)UE(G) — {1,2,...,p+ q} with the property that the edge-weights
w(uv) = f(u) + f(uv) + f(v),uv € E(G), form an arithmetic progression
{a,a +d,a +2d,...,a + (¢ — 1)d}, where a > 0 and d > 0 are two fixed
integers. If such a labeling exists then G is said to be an (a, d)-edge-antimagic
total graph. Such a graph G is called super if the smallest possible labels
appear on the vertices. Thus, a super (a,d)-edge-antimagic total graph is a
graph that admits a super (a, d)-edge-antimagic total labeling.

The concept of (a,d)-edge-antimagic total labeling, introduced by Siman-

juntak at al. in [11], is natural extension of the notion of edge-magic labeling
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defined by Kotzig and Rosa [9] (see also [1], [7], [10] and [14]). The super
(a, d)-edge-antimagic total labeling is natural extension of the notion of super
edge-magic labeling which was defined by Enomoto et al. in [6].

In this paper we investigate the existence of super (a, d)-edge-antimagic to-
tal labelings for connected and disconnected graphs. We will now concentrate
on a well-defined graph, namely the connected mountain graph and disjoint
union of m copies mountain graph, denoted by Ms,, and mMas,. This research
also show a new concept of a permutation of a consecutive number which is

very useful especially for finding a super (a, 1)-edge-antimagic total labeling.

Some Useful Lemmas

We start this section by a necessary condition for a graph to be super
(a, d)-edge-antimagic total, providing a least upper bound for feasible values
of d.

Lemma 1 If a(p, q)-graph is super (a, d)-edge-antimagic total then d < %.
Proof. Assume that a (p, ¢)-graph has a super (a, d)-edge-antimagic total
labeling f : V(G)UE(G) — {1,2,...,p+q}. The edge-weights w(uv) = f(u)+
f(v), form an arithmetic progression {a,a +d,a + 2d,...,a+ (¢ — 1)d}. The
minimum possible edge weight in the labeling f is at least 1+2+p+1 = p+4.
Thus, a > p+ 4. On the other hand, the maximum possible edge weight is at
most (p—1)+p+(p+¢q) =3p+q—1. Hence a+ (¢—1)d < 3p+¢— 1. From
the last inequality, we obtain the desired upper bound for the difference d. O

The following lemma, proved by Figueroa-Centeno et al. in [7], gives a
necessary and sufficient condition for a graph to be super (a, 0)-edge-antimagic

total or super edge-magic total.

Lemma 2 [13] A (p,q)-graph G is super edge-magic if and only if there exists
a bijective function f : V(G) — {1,2,...,p} such that the set S = {f(u) +
f() :uwv € E(G)} consists of q consecutive integers. In such a case, f extends
to a super edge-magic labeling of G with magic constant a = p + q + s, where
s=min(S) and S={a—(p+1),a—(p+2),...,.a—(p+q)}.

In our terminology, the previous lemma states that a (p,q)-graph G is
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super (a,0)-edge-antimagic total if and only if there exists an (a —p — ¢, 1)-

edge-antimagic vertex labeling.

Research Method

There are three step of studies. Each study uses a different method.

e Obtaining a network topology model. By web-searching technique,

we choose a Mountain Graph as well-defined family of graph.

e Determining an algorithm of SEATL. To find a SEATL bijective
function, we firstly utilize an EAVL strategy.

e Deriving a new Lemma, Theorem and Corollaries. Deductive

approach is the one of very popular way to prove mathematical truth.

Research Results

- The Mountain Graph

A connected Mountain Graph denoted by Mas, is a graph with vertex set
V| = {zj,y51 < i < 2ndan 1 < j < 6n+ 2,neN} and edge set, |E| =
{Ziyzi—2, 2iyzir3 if i is odd, z;y3i—3, Tiy3i42 if @ is even, ziysi—1, Tiysi, Tiyzit1 if
iis any, 1 <14 < 2n and y;yj41,1 < j < 6n+1}. Then |V(My,)| =p=8n+2
and |E(Ma,)| = ¢ = 16n + 1. If mountain graph, has a super (a,d)-edge-
antimagic total labeling then, for p = 8n 4+ 2 and ¢ = 16n + 1, it follows from
Lemma 1 that the upper bound of d is d <2 or d € {0, 1,2}.

The following new lemma describes an (a, 1)-edge-antimagic vertex labeling

for mountain graph.

Lemma 3 If n > 1, then the mountain graph connected Ma, has an (3,1)-

edge-antimagic vertexr labeling.
Proof. Define the vertex labeling oy : V(Ma,) — {1,2,...,8n + 2} in the
following way, for 1 <i<2nand 1 < j <6n+ 2.

() — 4 — (DD
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41%, for j = 1(mod 3),
a(yy) =4 U5 for j = 2(mod 3),
45+ = 1 7((,12)”1)’ for j = 3(mod 3),

The vertex labeling «y is a bijective function. The edge-weights of Ma,,,

under the labeling a7, constitute the following sets.

wél (riysi—2) = 8i—4; for ¢ is odd
wil (riysi—3) = 8i—4; for 7 is even
w3, (ziyzi-1) = 8i—2— W; for i is any
wa (Tiysi) = 8i—1; for i is any
w), (Tiysiv1) = 8i+ w; for i is any
wgl (ziysive) = 8i+2; for ¢ is even
wgl (ziys3i+3) = 8i+2; for 7 is odd
wd (yyie) = 5 for j = 1(mod 3)
w), (Y;yj+1) w; for j = 2(mod 3)
wé? (Yjyj+1) = % + 7(_1)];1“; for j = 3(mod 3)
It is not difficult to see that the set [Ji2, wh, ={3,4,5,..., SJ—;l} consists

of consecutive integers. Thus o is a (3, 1)-edge antimagic vertex labeling. O

We utilize the vertex labeling a;; from the proof of Lemma 3 to prove the

following theorem.

Theorem 1 If n > 1 then the graph Mas, has a super (24n + 6,0)-edge-

antimagic total labeling and a super (8n + 6,2)-edge-antimagic total labeling.

Proof.

Case 1. d=10

Label the vertices of My, with as(x;) = ai(x;) and as(y;) = a1(y;), for 1 <
i <2nand1 < j < 6n+2; and label the edges with aa(z;), a2(y;), aa(ziyzi—2),
o(iysi-3), c2(Tiysi-1), a2(xiysi), a2(Tiysiv1), a2(Tiysive), ae(riysi+s) and
a2(yjyj+1). It follows from Lemma 2 that the labeling as can be extended, by
completing the edge label p+1,p+2,...,p+¢q, to a super (a,0)-edge antimagic
total labeling, where, in the case p = 8mn + 2m and ¢ = 16mn + m.

We can find the total labeling W,, with summing w,, = wq,, with edge
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label ap. It is not difficult to see that the set Ui41 WéZ = {24n + 6, 24n + 6,

..., 24n + 6} contains an arithmetic sequence with the first term 24n + 6 and
common difference 0. Thus ag is a super (24n + 6,0)-edge-antimagic total

labeling. This concludes the proof. O

Case 2. d =2

Label the vertices of My, with as(x;) = ai(x;) and a3(y;) = ai1(y;), for 1 <
i <2nand1 < j < 6n+2; and label the edges with as(z;), as(y;), as(ziyzi—2),
a3(wiy3i-3), az(Tiysi-1), @3(Tiysi), az(Tiysiv1), a3(Tiysire), az(wysiv3) and
a3(y;yj+1). The total labeling o is a bijective function from V/(Ma,,) |J E(May,)
onto the set {1,2,3,...,24n+3}. For the edge weight of My,, under the total

labeling oy we have:

Wég = {wi63 + as(zysi—2); if ¢ is odd}
— (8i—4)+ (8n+8i—4)

ng = {wg63 + as(ziysi—3); if ¢ is even}
— (8i—4)+ (8n+8i—4)

W2, = {wl, +as(zysi—1); if iis odd}
= (8i—3)+ (8n+8i—3)

Wég = {wi3 + as(ziysi—1); if ¢ is even}
— (8i—2)+ (8n+8i—2)

Wo = {wd, +as(ziys); if i is any}
— Bi—1)+Bn+8 —1)

ng = {w23 + as(x;ysit1); if i is odd}
= (8i) + (8n + 8i)

st = {wz63 + asziysit1); if ¢ is even}

= Bi+1)+Bn+8i+1)
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Wa, = {wh, + as(ziysiye); if i is even}
= (8i+2)+(8n+8i+2)
ng = {wgg + a3(ziy3iy3); if i is odd}

= (8i+2)+ (8n+8i+2)

W;;? = {wég + a3(y;yj+1); if j = 1(mod 3)}
= (SjTJrl) + (8n + %)

Woclsl = {wié + a3(yjyj+1); if j = 2(mod 3), 7 is odd}
= g+ T

Wi? = {wig + a3(y;jyj+1); if j = 2(mod 3),7 is even}
= (L2 (2

W = {w + as(yysn); if § = 3(mod 3),j is odd}

= (%+1)+(8n+8j+3)

Wig = {wéﬁ + a3(y;yj+1); if j = 3(mod 3),j is even}
Y 8j

=)+ 8n+ =)
It is not difficult to see that the set Utlil Wég = {8n +6, 8n+8, 8n + 10

3 3
...,40n 4 6} contains an arithmetic sequence with the first term 8n + 6 and

)+ (8n +

common difference 0. Thus ag is a super (8n + 6,2)-edge-antimagic total

labeling. This concludes the proof. O

Now, we will show our a progressive result for permutation lemma. This
lemma is very useful especially for finding a super (a, 1)-edge-antimagic total

labeling.

Lemma 4 Let T be a sequence of consecutive number Y = {c,c+1,c+2,...c+
k}, k even. Then there exists a permutation II(T) of the elements of T such
that T +I1(Y) ={2c+ & +1,2c+ 5 +2,2c+ 5 +3,...,2c+ 2, 2c+ 3 + 1}

is also a sequence of consecutive number.

Proof. Let T be a sequence Y = {a;| a; =c+(i—1), 1 <i<k+1} and k
be even. Define a permutation II(T) = {b;| 1 <1i < k+ 1} of the elements of
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T as follows:

po_ ) etktiy ifiisodd 1<i<k+1
e c+§+% if iis even,2 <1 <k.

By direct computation, we obtain that T +II(Y) = {a; + b;| 1 <i < k+1} =
{2c+k+ ¥ io0dd,1 <i<k+1}U{2c+E 41 ieven2 <i <k} =
{2c+ 5+ 1,2+ 5 +2,2e+5+3,... 20+ 3 2c+ 3 1} O

Directly from Lemma 3, with respect to Lemma 4, it follows that mountain

graph has a super (a, 1)-edge-antimagic total labeling.

Theorem 2 If n > 1, then the graph Ma, has a super (16n + 6,1)-edge-

antimagic total labeling.

Proof. From Lemma 3, the graph My, has a (3,1)-edge-antimagic vertex
labeling. Let A = {c,c+1,c+2,...,c+ k} be a set of the edge weights of the
vertex labeling as, for ¢ = 3 and k = 16n. In light of Lemma 4, there exists
a permutation II(Y) of the elements of T such that T + [II(Y) + k- 1] =
{2¢+16n,2c+ 16n + 1,...,2c + 24n}. If [TI(Y) + £ — 1] is an edge labeling
of My, then Y + [II(T) + % — 1] gives the set of the edge weights of My,
which implies that the total labeling is super (a, 1)-edge-antimagic total, where
a = 2c+ 16n = 2(3) + 16n = 16n + 6. This concludes that the graph Mo,
admid a super (16n + 6, 1)-edge antimagic totallabeling. O

- Disjoint Union of Mountain Graph

Disjoint union of m copies of mountain graph denoted by mMos,, is a discon-
nected graph with vertex set, |V| = {:):f,yf, 1<i<2nand1<j<6n+2,ne¢e
N} and edge set, |E| = {afyk,_, aFyk . for i odd, afy}, o, aFyk, , for i even,
xfyé“i_l,xfygi,xfylgiﬂ for any 4, 1 <4 < 2n and y;?ny, 1<j<6n+1}. We
bounded mMay,, for 1 < k < m, m > 2 and n > 1. Thus |[V(mMas,)| =p =
m(8n + 2) and |E(mMay,)| = g = m(16n + 1).

If the disjoint union of m copies of a Mountain Graph mMos,,, has a super

(a, d)-edge-antimagic total labeling then, for p = m(8n+2) and ¢ = m(16n+1),

3m—3
16mn+m—1 or

it follows from Lemma 1 that the upper bound of d is d < 2 —
de{0,1,2}.
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Lemma 5 The graph mMas, for d = {0,2} has a (%,1)—edge—antimagic
vertez labeling if m > 3 is odd and n > 1.

Proof. Define the vertex labeling ay : V(mMa,) — {1,2,...,8nm + 2m} in

the following way:

(j—§)4m 1 k+1+(<1)7+1)m- for j = 1(mod 9)
G2y | 2wk (0 m )
3 2 ’ -
. . (ETLETE.
G=3dm Stk P for = 3(mod 9) ,j is odd
& +15m —k+1; for 7 =3(mod 9) ,j is even
, m CuFt m
(]—§)4m n 8m+k+( - ) ;  for j =4(mod 9)
. M+6m k+1; for j = 5(mod 9)
au(yy) = 12m k14
(372)4 + C— ; for j =6(mod9) ,j is even
(j*15)4m 38m+k+((_1)k¢)m . ..
P 5 ; for j=6(mod?9) ,j is odd
%4»9”1*]{4»1; for j = 7(mod 9)
. m [C LS R,
(J—§)4m 4 18 +k+1+2( P ;  for j =8(mod 9)
M+12m k+1; for 7 =9(mod 9) ,j is odd
( —18) 44m+k;+((1)k$)m . ..
\ J 5 4 2 ; for j =9(mod9) ,j is even
( (i —1)dm +3m — k + 1; for i = 1(mod 6)
14m+k+(w)m .
(1 —2)4m 5 : : ;  for i =2(mod 6)
et (G g,
(et = (i — 3)4m 4 20mth > ) ; for i = 3(mod 6)
i m (=1DF+1 m
(i —4)4m + ¥ +k+1+2( 2k ) ; for i = 4(mod 6)
. (SIS
(i — 5)4m 4 3 +k+1+2( ) ; for i = 5(mod 6)
[ (1 — 6)4m +24m — k + 1; for i = 6(mod 6)

for1 <i<2nand1<j<6n+2.
The vertex labeling a4 is a bijective function. We have the same way

with lemma 4 to determine the value of the edge-weights of mMay,. It is

not difficult to see that set Ut qwb, = {3t 3mas dmAT (16"_§)m+1}
3m+3 1)
2

consists of consecutive integers. Thus ay is a ( -edge antimagic vertex



114 (©Saintifika, Vol. 14, No. 1, hal: 106-118 Juni 2012

labeling. O

Baca, Lin, Miller and simanjutak (see[9],Theorem 5) have proved that if
(p, ¢)-graph G has an (a, d)-edge-antimagic vertex labeling then G has a super
(a + p+ q,d — 1)-edge-antimagic total labeling and a super (a +p+1,d + 1)-
edge-antimagic total labeling. With the Theorem 3.3.1 in hand, and using
Theorem 5 from [9], we obtain the following result(Dafik,2007:41).

Theorem 3 If m > 3 is odd and n > 1 then the graph mMo, has a super
7Tn2+5 2)_

(24mn+ (9m+3) ,0)-edge-antimagic total labeling and a super (8mn +

edge-antzmagzc total labeling.

Proof.
Case 1. d =0
Label the vertices of mMa, with as(z¥) = as(«¥) and oz5(yj) = a4(yj) for
1 <i<2nand 1 <5 < 6n+ 2; and label the edges with a5(yjyj+1),
as(@fysi_o), as(@fysiq), as(@fys), as(@iyfing), as(@fyig), as(ziyhiis)
and as(2Fyk ).

We can found the total labeling W, with summing edge weight w,, =
wq, with edge label as. It is not difficult to see that the set U45 Wt
{24mn + M 24mn + (9m+3) , 24mn + (9m+3 } contains an arlthmetlc

(9m+3)

sequence Wlth the first term {24mn + and common difference 0. Thus

ag is a super (24mn+ (9m+3) )—edge—anmmaglc total labeling. This concludes
the proof. O
Case 2. d =2

Label the vertices of mMa, with ag(zF) = as(zF) and aﬁ(yf) = a;;(yf),
for 1 <i<2nand1 < j < 6n+ 2; and label the edges with ozdyfyfﬂ),
as(wfyli_s), as(zfys;_y), as(zfyly), 045(5553/]??%1)’ 046(5553/]??%3)’ 045(5553/]??%2)
and ag(Fyk ).

We can find the total labeling W,, with summing edge weight w,, =
wq, with edge label ag. It is not difficult to see that the set U45 W,

{TmES 4 8mn, T 4 8mn, )+ 8mn ..., HEL 4 40mn} contains an
m+5
2

arithmetic sequence with the first term 8mn + and common difference

Tm+5
2

2. Thus ag is a super (8mn + , 2)-edge-antimagic total labeling. This
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concludes the proof. O

Here, we will present our new permutation lemma. This lemma is also

very useful for proving a super (a, 1)-edge-antimagic total labeling.

Lemma 6 Let ¥ be a sequence of consecutive number ¥ = {c,c+1,c+2,...c+
k}, k even. Then there exists a permutation II(V) of the elements of ¥ such
that U +1I(¥) = {2c+ %, 2¢+ g +1,2c+ % +2,...,2c+ %} is also a sequence

of consecutive number.

Proof. Let ¥ be a sequence ¥ = {a;| a; =c+ (i —1), 1 <i<k+1} and
k be even. Define a permutation II(¥) = {b;] 1 < i < k + 1} of the elements
of ¥ as follows:
[ erivd if1<i<k
Tl e+i—(B41) ifE41<i<k+l.

By direct computation, we obtain that W +II(V) = {a; +b;| 1 <i < k+1} =

{e+i+bif1<i<Elufe+i-E+DiEE+1<i<k+1}={2c+% 2+
Et1l2c+5+2204+ 543,20+ 3 20+ 3} O

Directly from Lemma 3, with respect to Lemma 6, it follows that mountain

graph has a super (a,1)-edge-antimagic total labeling.

Theorem 4 If m > 2 and n > 1, then the graph mMa, has a super (16nm +
4dm + 2, 1)-edge-antimagic total labeling.

Proof. From Lemma 5, the graph mMa, has a (3’g+3,1)—edge—antimagic

vertex labeling. Let A = {c,c+1,c¢+2,...,c+k} be a set of the edge weights
of the vertex labeling ay, for ¢ = 37”72‘*'3 and k = 16mn +m — 1. In light of

Lemma 6, there exists a permutation II(¥) of the elements of ¥ such that ¥+
[I(V) + & — 1] = {2c+16mn+m—1,2c+16mn+m, ..., 2c+32mn+2m—2}.
If [II(T) + & — 1] is an edge labeling of mMa, then Y + [II(Y) + & — 1] gives
the set of the edge weights of mMas,,, which implies that the total labeling is
super (a, 1)-edge-antimagic total, where a = 2c + 16mn +m — 1 = 2(22t2) +
16mn+m —1 = 16mn +4m + 2. This concludes that the graph m My, admid
a super (16mn + 4m + 2, 1)-edge antimagic totallabeling. O
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Conclusion

We have proved that mountain graph M, and disjoint union of moun-
tain graph mMos,, admit super (a,d)-edge-antimagic for d € {0,1,2} and for
specific m, n. Apart from those cases, we have not found any super (a, d)-edge-

antimagic total labeling. Therefore we propose the following open problems.

Open Problem 1 For the graph mMs,, n > 1; 1 < k < m; m 1is even,

determine if there is a super (a,d)-edge-antimagic total labeling with d = 0
dan d = 2.



Bibliography

[1]

M. Baca, Y. Lin, M. Miller and R. Simanjuntak, New constructions of
magic and antimagic graph labelings, Utilitas Math. 60 (2001), 229-239.

M. Baca and L. Brankovic, Edge-antimagicness for a class of disconnected

graphs, Ars Combin., in press.

M. Baca, Dafik, M. Miller and J. Ryan, On super (a,d)-edge antimagic
total labeling of caterpillars, J. Combin. Math. Combin. Comput., 65
(2008), 61-70.

G.S. Bloom and S.W. Golomb, Applications of numbered undirected
graphs, Proc. IEEE, 65 (1977) 562-570.

G.S. Bloom and S.W. Golomb, Numbered complete graphs, unusual rules
and assorted applications, In: Theory and Applications of Graphs, Lecture
Notes in Math., 642, Springer-Verlag, New York (1978) 53-65.

H. Enomoto, A.S. Lladé, T. Nakamigawa and G. Ringel, Super edge-
magic graphs, SUT J. Math. 34 (1998), 105-109.

R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The
place of super edge-magic labelings among other classes of labelings, Dis-
crete Math. 231 (2001), 153-168.

J. Ivanco and I. Lu¢kani¢ova, On edge-magic disconnected graphs, SUT
Journal of Math. 38 (2002), 175-184.

A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math.
Bull. 13 (1970), 451-461.

117



118 (©Saintifika, Vol. 14, No. 1, hal: 106-118 Juni 2012

[10] G. Ringel and A.S. Llad6, Another tree conjecture, Bull. Inst. Combin.
Appl. 18 (1996), 83-85.

[11] R. Simanjuntak, F. Bertault and M. Miller, Two new (a,d)-antimagic
graph labelings, Proc. of Eleventh Australasian Workshop on Combina-
torial Algorithms (2000), 179-189.

[12] I.W. Sudarsana, D. Ismaimuza, E.T. Baskoro and H. Assiyatun, On super
(a, d)-edge-antimagic total labeling of disconnected graphs, JCMCC 55
(2005), 149-158.

[13] K.A. Sugeng, M. Miller, Slamin and M. Bagca, (a, d)-edge-antimagic total
labelings of caterpillars, Lecture Notes in Computer Science 3330 (2005),
169-180.

[14] W. D. Wallis, E. T. Baskoro, M. Miller and Slamin , Edge-magic total
labelings, Austral. J. Combin. 22 (2000), 177-190.

[15] W.D. Wallis, Magic Graphs, Birkhauser, Boston - Basel - Berlin, 2001.



