Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/127
Title: On Total Vertex Irregularity Strength Cocktail Party Graphs
Authors: Wijaya, K.
Slamin
Miller, Mirka
Keywords: Total vertex irregularity strength, cocktail party graph
Issue Date: Jan-2011
Publisher: Jurnal Ilmu Dasar
Series/Report no.: Vol. 12 No. 2 (2011) 148 – 151.;
Abstract: A vertex irregular total k-labeling of a graph G is a function λ from both the vertex and the edge sets to {1,2,3,,k} such that for every pair of distinct vertices u and x, λ(u)+ Σλ(uv) ≠ λ(x)+ Σλ(xy). The integer k is called the total vertex irregularity strength, denoted by tvs(G), is the minimum value of the largest label over all such irregular assignments. In this paper, we prove that the total vertex irregularity strength of the Cocktail Party graph H_2,n, that is tvs(H_2,n)= 3 for n≥3.
URI: http://repository.unej.ac.id/handle/123456789/127
Appears in Collections:MIPA

Files in This Item:
File Description SizeFormat 
JID_12_2_TVS_Cocktail_2011.pdfMain Article83.97 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.