Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/127
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWijaya, K.-
dc.contributor.authorSlamin-
dc.contributor.authorMiller, Mirka-
dc.date.accessioned2013-06-16T16:03:09Z-
dc.date.available2013-06-16T16:03:09Z-
dc.date.issued2011-01-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/127-
dc.description.abstractA vertex irregular total k-labeling of a graph G is a function λ from both the vertex and the edge sets to {1,2,3,,k} such that for every pair of distinct vertices u and x, λ(u)+ Σλ(uv) ≠ λ(x)+ Σλ(xy). The integer k is called the total vertex irregularity strength, denoted by tvs(G), is the minimum value of the largest label over all such irregular assignments. In this paper, we prove that the total vertex irregularity strength of the Cocktail Party graph H_2,n, that is tvs(H_2,n)= 3 for n≥3.en_US
dc.language.isoenen_US
dc.publisherJurnal Ilmu Dasaren_US
dc.relation.ispartofseriesVol. 12 No. 2 (2011) 148 – 151.;-
dc.subjectTotal vertex irregularity strength, cocktail party graphen_US
dc.titleOn Total Vertex Irregularity Strength Cocktail Party Graphsen_US
dc.typeArticleen_US
Appears in Collections:MIPA

Files in This Item:
File Description SizeFormat 
JID_12_2_TVS_Cocktail_2011.pdfMain Article83.97 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.