Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/126910
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCAHYANTI, Nur-
dc.date.accessioned2025-07-01T06:25:01Z-
dc.date.available2025-07-01T06:25:01Z-
dc.date.issued2024-07-29-
dc.identifier.nim201810101079en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/126910-
dc.description.abstractZero inflation is a condition where data with a value of zero is recorded more than expected, which often occurs due to events that have no activity or movement and are ultimately ignored. Data with zero inflation characteristics is sometimes difficult to predict. This research aims to find a suitable method for predicting time series, especially for time series data with excess zero inflation. The methods used in this research are ARIMA and GAMLSS. ARIMA is a classic method in time series analysis that relies on autoregressive, differencing and moving average components to capture patterns in data. Meanwhile, GAMLSS is a more flexible method that allows modeling more complex data distribution parameters. In this research, both methods are applied to historical zero inflated data and their performance is evaluated using metrics such as Root Mean Square Error (RMSE) and using the Aikaike Information Criterion and Schwarz Bayessian Criterion(SBC) criteria. The results show that the best model for data with excess zero inflation is GAMLSS with a special Zero Inflated Negative Binomial (ZINBI) distribution.en_US
dc.description.sponsorshipProf. Drs. I Made Tirta. M.Sc.,Ph.D. Dr. Yuliani Setia Dewi, S.Si.,M.Si.en_US
dc.language.isootheren_US
dc.publisherFakultas Matematika dan Ilmu Pengetahuan Alamen_US
dc.subjectAutoregressive Integrated Moving Averageen_US
dc.subjectZero Inflated Negative Binomialen_US
dc.subjectGeneralized Additive Model for Locationen_US
dc.subjectScale and Shape,en_US
dc.subjectZero Inflated Poissonen_US
dc.titlePerbandingan Metode ARIMA(Autoregressive Integrated Moving Average) dan GAMLSS(Generalized Additive Model for Location,Scale,and Shape) Dalam Memprediksi Kunjungan Situs Website (Studi Kasus: Website Laboratorium Statistika Universitas Jember)en_US
dc.typeSkripsien_US
dc.identifier.prodiMatematikaen_US
dc.identifier.pembimbing1Prof. Drs. I Made Tirta, M.Sc., Ph.D.en_US
dc.identifier.pembimbing2Dr. Yuliani Setia Dewi, S.Si., M.Si.en_US
dc.identifier.validatorvalidasi_repo_ratna_Maret 2025en_US
dc.identifier.finalization0a67b73d_2025_07_tanggal 01en_US
Appears in Collections:UT-Faculty of Mathematics and Natural Sciences

Files in This Item:
File Description SizeFormat 
Skripsi_NurCahyanti_201810101079repository.pdf
  Until 2029-07-29
489.42 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools