Please use this identifier to cite or link to this item:
https://repository.unej.ac.id/xmlui/handle/123456789/112293
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | LASIM, Ahmad | - |
dc.contributor.author | HALIKIN, Ikhsanul | - |
dc.contributor.author | WIJAYA, Kristiana | - |
dc.date.accessioned | 2023-02-22T01:48:39Z | - |
dc.date.available | 2023-02-22T01:48:39Z | - |
dc.date.issued | 2022-12-15 | - |
dc.identifier.uri | https://repository.unej.ac.id/xmlui/handle/123456789/112293 | - |
dc.description.abstract | Suppose 𝐺 is a simple and connected graph with 𝑞 edges. A harmonious labeling on a graph 𝐺 is an injective function 𝑓: 𝑉(𝐺) → {0, 1, 2, … , 𝑞 − 1} so that there exists a bijective function 𝑓 ∗ : 𝐸(𝐺) → {0,1, 2, … , 𝑞 − 1} where 𝑓 ∗(𝑢𝑣) = 𝑓(𝑢) + 𝑓(𝑣)(𝑚𝑜𝑑 𝑞), for each 𝑢𝑣 ∈ 𝐸(𝐺). An odd harmonious labeling on a graph 𝐺 is an injective function 𝑓 from 𝑉(𝐺) to non-negative integer set less than 2𝑞 so that there is a function 𝑓 ∗(𝑢𝑣) = 𝑓(𝑢) + 𝑓(𝑣) where 𝑓 ∗(𝑢𝑣) ∈ {1, 3, 5, … , 2𝑞 − 1} for every 𝑢𝑣 ∈ 𝐸(𝐺). An even harmonious labeling on a graph 𝐺 is an injective function 𝑓: 𝑉(𝐺) → {0, 1, 2, … , 2𝑞} so that there is a bijective function 𝑓 ∗ : 𝐸(𝐺) → {0,2,4, … , 2𝑞 − 2} where 𝑓 ∗(𝑢𝑣) = 𝑓(𝑢) + 𝑓(𝑣)(𝑚𝑜𝑑 2𝑞) for each 𝑢𝑣 ∈ 𝐸(𝐺). In this paper, we discuss how to build new labeling (harmonious, odd harmonious, even harmonious) based on the existing labeling (harmonious, odd harmonious, even harmonious). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Barekeng | en_US |
dc.subject | even harmonious labeling | en_US |
dc.subject | harmonious labeling | en_US |
dc.subject | odd harmonious labeling | en_US |
dc.title | The Harmonious, Odd Harmonious, And Even Harmonious Labeling | en_US |
dc.type | Article | en_US |
Appears in Collections: | LSP-Jurnal Ilmiah Dosen |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
FMIPA_THE HARMONIOUS, ODD HARMONIOUS, AND.pdf | 1.06 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.