Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/111813
Title: The Permeation of High Concentration Hydrogen Sulfide (H2S) Gas Using PTFE (Polytetrafluoroethylene) and PVDF (Polyvinylidene Fluoride) membranes
Authors: ASNAWATI, Asnawati
MUSTAFIDAH, Alifah
SHOLEHAH, Diah Ayu Nur
INDARTI, Dwi
MULYONO, Tri
PILUHARTO, Bambang
MUFLIHAH, Yeni Maulidah
Keywords: Permeation
PTFE (Politetrafluoroethylene)
PVDF (polyvinylidene fluoride)
Hydrogen sulfide
removal
Issue Date: 2022
Publisher: Indonesian Chimica Letters
Abstract: Hydrogen sulfide (H2S) is a toxic, corrosive, and flammable gas. The presence of H2S gas can be reduced by a permeation method using PTFE (Polytetrafluoroethylene) membranes and PVDF (polyvinylidene fluoride) membranes. This H2S gas passed through the membrane and was then captured by the SAOB (Sulfide Anhydride Oxidant Buffer) in S2- species form. A visible spectrophotometer was applied for the analysis of passed H2S gas. Using a PTFE membrane, the optimum flow rate was obtained at 14.71 mL/min, with a mass flux of 0.825 kg/m2 .hour, permeability coefficient of 0.696 kg/m2 .hour.bar, and percent removal of H2S gas was 88.14%. The optimum flow rate for the SAOB was obtained at a rate of 0.30 mL/min with a mass flux of 0.843 kg/m2 .hour and a percent removal of H2S gas of 89.98%. Based on the results obtained on the PVDF membrane, the mass flux produced in the optimization of H2S gas is 0.742 kg/cm2 .hour, and the optimization of the SAOB solution is 0.754 kg/cm2 .hour. The resulting permeability coefficient value is 0.741 kg/cm2 .hour. The results indicate that this study can remove H2S gas at the optimum H2S gas flow rate of 4.76 mL/minute of 94.89% and the optimum SAOB flow rate of 0.3 mL/minute of 95.66%
URI: https://repository.unej.ac.id/xmlui/handle/123456789/111813
Appears in Collections:LSP-Jurnal Ilmiah Dosen

Files in This Item:
File Description SizeFormat 
MIPA_JURNAL_The Permeation of High Concentration Hydrogen Sulfide (H2S) Gas Using PTFE.pdf1.34 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.