Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/110256
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKRISTIANA, Arika Indah-
dc.contributor.authorDAFIK, Dafik-
dc.contributor.authorALFARISI, Ridho-
dc.contributor.authorANWAR, Umi Azizah-
dc.contributor.authorCITRA, Sri Moeliyana-
dc.date.accessioned2022-10-19T07:43:52Z-
dc.date.available2022-10-19T07:43:52Z-
dc.date.issued2020-
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/110256-
dc.description.abstractAll graph in this paper are connected and simple. Let G = (V, E) be a simple graph, where V (G) is vertex set and E(G) is edge set. The local irregularity vertex coloring of G is l : V (G) → {1, 2, · · · , k} and w : V (G) → N where w(u) = Σv∈N(u) l(v) such that opt(l) = min{max{li} and for every uv ∈ E(G), w(u) 6= w(v), w is a local irregularity vertex coloring. The minimum of color set is called the local irregular chromatic number, denoted by χlis(G). In this paper, we determine the local irregular chromatic number of graphs.en_US
dc.language.isoen_USen_US
dc.publisherAdvances in Mathematics: Scientific Journalen_US
dc.subjectinclusiveen_US
dc.subjectlocal irregularityen_US
dc.subjectchromatic numberen_US
dc.titleAn Inclusive Local Irregularity Coloring of Graphsen_US
dc.typeArticleen_US
Appears in Collections:LSP-Jurnal Ilmiah Dosen

Files in This Item:
File Description SizeFormat 
FKIP_JURNAL_ArikaIndah_An Inclusive Local Irregularity Coloring of Graphs.pdf727.99 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.