Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/110230
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKRISTIANA, Arika Indah-
dc.contributor.authorNIKMAH, Nafidatun-
dc.contributor.authorDAFIK, Dafik-
dc.contributor.authorALFARISI, Ridho-
dc.contributor.authorHASAN, M. Ali-
dc.contributor.authorSLAMIN, Slamin-
dc.date.accessioned2022-10-19T02:19:17Z-
dc.date.available2022-10-19T02:19:17Z-
dc.date.issued2021-09-05-
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/110230-
dc.description.abstractLet G = (V,E) be a simple, finite, undirected, and connected graph with vertex set V (G) and edge set E(G). A bijection l : V (G) → {1, 2,...,k} is label function l if opt(l) = min{max(li) : li vertex irregular labeling} and for any two adjacent vertices u and v, w(u) ̸= w(v) where w(u) = P v∈N(u) l(v) and N(u) is set of vertices adjacent to v. w is called local irregularity vertex coloring. The minimum cardinality of local irregularity vertex coloring of G is called chromatic number local irregular denoted by χlis(G). In this paper, we verify the exact values of volcano, broom, parachute, double broom and complete multipartite graphs.en_US
dc.language.isoen_USen_US
dc.publisherWorld Scientific Publishing Companyen_US
dc.subjectLocal irregularen_US
dc.subjectchromatic numberen_US
dc.subjectchromatic number local irregularen_US
dc.titleOn the local irregularity vertex coloring of volcano, broom, parachute, double broom and complete multipartite graphsen_US
dc.typeArticleen_US
Appears in Collections:LSP-Jurnal Ilmiah Dosen



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.