Please use this identifier to cite or link to this item:
                
    
    https://repository.unej.ac.id/xmlui/handle/123456789/110230Full metadata record
| DC Field | Value | Language | 
|---|---|---|
| dc.contributor.author | KRISTIANA, Arika Indah | - | 
| dc.contributor.author | NIKMAH, Nafidatun | - | 
| dc.contributor.author | DAFIK, Dafik | - | 
| dc.contributor.author | ALFARISI, Ridho | - | 
| dc.contributor.author | HASAN, M. Ali | - | 
| dc.contributor.author | SLAMIN, Slamin | - | 
| dc.date.accessioned | 2022-10-19T02:19:17Z | - | 
| dc.date.available | 2022-10-19T02:19:17Z | - | 
| dc.date.issued | 2021-09-05 | - | 
| dc.identifier.uri | https://repository.unej.ac.id/xmlui/handle/123456789/110230 | - | 
| dc.description.abstract | Let G = (V,E) be a simple, finite, undirected, and connected graph with vertex set V (G) and edge set E(G). A bijection l : V (G) → {1, 2,...,k} is label function l if opt(l) = min{max(li) : li vertex irregular labeling} and for any two adjacent vertices u and v, w(u) ̸= w(v) where w(u) = P v∈N(u) l(v) and N(u) is set of vertices adjacent to v. w is called local irregularity vertex coloring. The minimum cardinality of local irregularity vertex coloring of G is called chromatic number local irregular denoted by χlis(G). In this paper, we verify the exact values of volcano, broom, parachute, double broom and complete multipartite graphs. | en_US | 
| dc.language.iso | en_US | en_US | 
| dc.publisher | World Scientific Publishing Company | en_US | 
| dc.subject | Local irregular | en_US | 
| dc.subject | chromatic number | en_US | 
| dc.subject | chromatic number local irregular | en_US | 
| dc.title | On the local irregularity vertex coloring of volcano, broom, parachute, double broom and complete multipartite graphs | en_US | 
| dc.type | Article | en_US | 
| Appears in Collections: | LSP-Jurnal Ilmiah Dosen | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| FKIP_JURNAL_ArikaIndah_On the local irregularity vertex coloring of volcano, broom, parachute, double broom and complete multipartite graphs.pdf | 625.7 kB | Adobe PDF | View/Open | 
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.