Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/106
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSlamin-
dc.contributor.authorDafik-
dc.contributor.authorWinnona, Wyse-
dc.date.accessioned2013-06-13T02:45:08Z-
dc.date.available2013-06-13T02:45:08Z-
dc.date.issued2012-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/106-
dc.description.abstractA vertex irregular total $k$-labeling of a graph $G$ with vertex set $V$ and edge set $E$ is an assignment of positive integer labels $\{1,2,...,k\}$ to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of $G$, denoted by $tvs(G)$ is the minimum value of the largest label $k$ over all such irregular assignment. In this paper we consider the total vertex irregularity strengths of disjoint union of $s$ isomorphic sun graphs, $tvs(sM_n)$, disjoint union of $s$ consecutive non-isomorphic sun graphs, $tvs(\bigcup_{i=1}^sM_{i+2})$, and disjoint union of any two non-isomorphic sun graphs $tvs(M_k \bigcup M_n)$.en_US
dc.language.isoenen_US
dc.publisherInternational Journal of Combinatoricsen_US
dc.relation.ispartofseriesVol 2012;-
dc.subjectvertex irregular total $k$-labeling, total vertex irregularity strength, sun graphs.en_US
dc.titleTotal Vertex Irregularity Strength of the Disjoint Union of Sun Graphsen_US
dc.typeArticleen_US
Appears in Collections:MIPA

Files in This Item:
File Description SizeFormat 
284383(2).pdfMain Article1.4 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.