Please use this identifier to cite or link to this item: https://repository.unej.ac.id/xmlui/handle/123456789/104184
Full metadata record
DC FieldValueLanguage
dc.contributor.authorADAWIYAH, Robiatul-
dc.contributor.authorDAFIK, Dafik-
dc.contributor.authorAGUSTIN, Ika Hesti-
dc.contributor.authorPRIHANDINI, Rafiantika Megahnia-
dc.contributor.authorALFARISI, Ridho-
dc.contributor.authorALBIRRI, Ermita Rizki-
dc.date.accessioned2021-04-19T01:51:20Z-
dc.date.available2021-04-19T01:51:20Z-
dc.date.issued2019-12-01-
dc.identifier.urihttp://repository.unej.ac.id/handle/123456789/104184-
dc.description.abstractLet G be a connected graph with E as edge set and V as vertex set . rm(v|W) = {d(v, s1), d(v, s2), . . . , d(v, sk)} is the multiset representation of a vertex v of G with respect to W where d(v, si) is a distance between of the vertex v and the vertices in W for k−ordered set W = {s1, s2, . . . , sk} of vertex set G. If rm(v|W) 6= rm(u|W) for every pair u, v of adjacent vertices of G, we called it as local resolving set of G. The minimum cardinality of local resolving set W is called local multiset dimension. It is denoted by µl(G). Hi ∼= H, for all i ∈ V (G). If H ∼= K1, G H is equal to the graph produced by adding one pendant edge to every vertex of G. If H ∼= mK1 where mK1 is union of trivial graph K1, G H is equal to the graph produced by adding one m pendant edge to every vertex of G. In this paper, we analyze the exact value of local multiset dimension on some graphs with homogeneous pendant edgesen_US
dc.language.isoenen_US
dc.publisherJournal of Physics: Conference Seriesen_US
dc.subjectOn the Local Multiset Dimension of Graph With Homogenous Pendant Edgesen_US
dc.titleOn the Local Multiset Dimension of Graph With Homogenous Pendant Edgesen_US
dc.typeArticleen_US
dc.identifier.kodeprodiKODEPRODI0210191#Pendidikan Matematika-
dc.identifier.nidnNIDN0031079201-
dc.identifier.nidnNIDN0001016827-
dc.identifier.nidnNIDN0001088401-
dc.identifier.nidnNIDN0001088401-
dc.identifier.nidnNIDN0007119401-
dc.identifier.nidnNIDN0027029201-
Appears in Collections:LSP-Jurnal Ilmiah Dosen

Files in This Item:
File Description SizeFormat 
FKIP-Jurnal_ROBIATUL_On the local multiset dimension of graph with.pdf1.09 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.