Show simple item record

dc.contributor.authorSETIAWAN, Juni
dc.date.accessioned2025-01-13T03:38:39Z
dc.date.available2025-01-13T03:38:39Z
dc.date.issued2024-05-30
dc.identifier.nim202410102001en_US
dc.identifier.urihttps://repository.unej.ac.id/xmlui/handle/123456789/124745
dc.description.abstractSoftware defect prediction plays a vital role in enhancing software quality and minimizing maintenance costs. This study aims to improve software defect prediction by employing a combination of Ant Colony Optimization (ACO) for feature selection and ensemble techniques, particularly Gradient Boosting. The research utilizes three NASA MDP datasets: MC1, KC1, and PC2, to evaluate the performance of four machine learning algorithms: Random Forest, Support Vector Machine (SVM), Decision Tree, and Naïve Bayes. Data preprocessing involved handling class imbalances using the SMOTE technique and transforming categorical data into numerical representations. The results indicate that the integration of ACO and Gradient Boosting significantly enhances the accuracy of all four algorithms. Notably, the Random Forest algorithm achieved the highest accuracy of 99% on the MC1 dataset. The findings suggest that combining ACO based feature selection with ensemble techniques can effectively boost the performance of software defect prediction models, offering a robust approach for early detection of potential software defects and contributing to improved software reliability and efficiency.en_US
dc.description.sponsorshipWindi Eka Yulia Retnani, S.Kom., M.T. Muhammad ‘Ariful Furqon, S.Pd., M.Komen_US
dc.publisherFakultas Ilmu Komputeren_US
dc.subjectSoftware Defecten_US
dc.subjectAnt Colony Optimizationen_US
dc.subjectSMOTEen_US
dc.subjectEnsembleen_US
dc.titlePeningkatan Software Defect Prediction dengan Kombinasi Pemilihan Fitur Berbasis Ant Colony Optimization dan Teknik Ensembleen_US
dc.typeSkripsien_US
dc.identifier.prodiTeknologi Informasien_US
dc.identifier.pembimbing1Windi Eka Yulia Retnani, S.Kom., M.Ten_US
dc.identifier.pembimbing2Muhammad ‘Ariful Furqon, S.Pd., M.Komen_US
dc.identifier.validatorvalidasi_repo_ratna_Oktober_2024en_US
dc.identifier.finalization0a67b73d_2025_01_tanggal 13en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record