dc.contributor.author | RAMADHANI, Salsabilla | |
dc.date.accessioned | 2024-08-08T03:46:13Z | |
dc.date.available | 2024-08-08T03:46:13Z | |
dc.date.issued | 2024-07-19 | |
dc.identifier.nim | 202410101116 | en_US |
dc.identifier.uri | https://repository.unej.ac.id/xmlui/handle/123456789/123127 | |
dc.description | Finalisasi repositori tanggal 8 Agustus 2024_Kurnadi_Rara | en_US |
dc.description.abstract | This research implements the LRFM model and K-Means algorithm to find customer segments and analyze each segment. The LRFM model determines customer purchasing behavior using 4 variables (Length, Recency, Frequency, and Monetary) processed from sales and customer data of Mulia Jasa Aluminum and Glass Business. The LRFM model will be grouped using the K-Means algorithm and the Silhouette method to determine the segment of customer purchasing behavior. This research adapts the CRISP-DM (Cross Industry Standard Process for Data Mining) framework for data analysis. This research aims to help Mulia Jasa business find its customer groups as a consideration for making more targeted decisions in determining marketing strategies and services to customers. The results of this study are 3 customer clusters including cluster 0 with total data of 132 customers, cluster 1 with total data of 144 customers, and cluster 2 with total data of 28 customers. | en_US |
dc.description.sponsorship | 1. Priza Pandunata, S.Kom., M.Sc.
2. Fajrin Nurman Arifin, ST.,M.Eng. | en_US |
dc.language.iso | other | en_US |
dc.publisher | Fakultas Ilmu Komputer | en_US |
dc.subject | Customer Segmentation | en_US |
dc.subject | LRFM Model | en_US |
dc.subject | K-Means | en_US |
dc.subject | Silhouette | en_US |
dc.title | Implementasi Model LRFM dan Algoritma K-Means dalam Segmentasi Pelanggan Usaha Aluminium dan Kaca | en_US |
dc.type | Skripsi | en_US |
dc.identifier.prodi | Sistem Informasi | en_US |
dc.identifier.pembimbing1 | Priza Pandunata, S.Kom., M.Sc. | en_US |
dc.identifier.pembimbing2 | Fajrin Nurman Arifin, S.T., M.Eng. | en_US |
dc.identifier.validator | validasi_repo_ratna_juli_2024 | en_US |