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Abstract. In this paper, we study vertex coloring edge of corona graph. A k-edge weigting of
graph G is mapping w : (EG) → {1, 2, · · · , k}. An edge-weighting w induces a vertex coloring
Fw : V (G) → N defined by fw(v) =

∑
v∈e

w(e). An edge-weighting w is vertex coloring if
fw(u) 6= fw(v) for any edge uv. Chang, et.al denoted by µ(G) the minimum k for which G has a
vertex-coloring k-edge-weighting. In this paper, we obtain the lower bound of of vertex coloring
edge-weighting of Pn � H and we study the exact value of vertex coloring edge-weighting of
path corona several graph.

1. Introduction
Let G be a nontrivial, finite, simple, undirected and connected graphs, with vertex set V (G),
edge set E(G) and with no isolated vertex, for more detail definition of graph see [7, 4]. Chang,
et.al in [3] introduced a k-edge weigting of graph G is mapping w : (EG) → {1, 2, · · · , k}. An
edge-weighting w induces a vertex coloring Fw : V (G)→ N defined by fw(v) =

∑
v∈ew(e). An

edge-weighting w is vertex coloring if fw(u) 6= fw(v) for any edge uv. Chang, et.al denoted by
µ(G) the minimum k for which G has a vertex-coloring k-edge-weighting. The study of vertex
coloring from an edge weighting see in [1], [3], [5], [6], [9], and [11]. Hongliang Lu, et.al in [9]
obtained several simple sufficient conditions for graphs to be vertex-coloring 3 edge weighting.
Dudek, et.al in [6] showed that deterniming whether a particular graph has a weighting of
the edges that induces a proper vertex coloring is NP-complete. Chang, et.al in [3] proved
µ(P3), µ(Pn), µ(Cn), µ(Kn) and µ(Km,n). Yezhow Wu, et.al in [11] found every 4 edge connected
4 colorable multigraph G admits a vertex coloring 3-edge weighting. Futhermore, Adawiyah,
et.al in [1] discussed some unicyclic graphs and its vertex coloring edge-weighting and Dafik,
et.al in [5] found vertex coloring edge-weighting of some wheel related of graphs.

Proposition 1 [3] Let G be a connected graph, then we have

• µ(P3) = 1 and µ(Pn) = 2 for n ≥ 4

• µ(Cn) = 2 for n ≡ 0(mod4) and µ(Cn) = 3 for n 6= 0(mod4)

• µ(Km,n) = 1 for m 6= n and µ(Km,n) = 2 for m = n ≥ 2

• µ(Wn) = 2 for n ≥ 4
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• µ(Fn) = 2 for n ≥ 4

For any two graphs G and H. A coronation of G and H, denoted by G � H, is a connected
graph which formed by taking n copies of graphs Hi, 1 ≤ i ≤ n of H and connecting i-th vertex
of G to the vertices of Hi.

2. The Results
We will obtain the lower bound of vertex coloring edge weighting of path corona graph H and we
study the exact value of vertex coloring edge-weighting of path corona several graphs, namely
µ(Pn � Pm), µ(Pn � Sm), µ(Pn � Fm), µ(Pn � Cm) and µ(Pn �Wm).

Lemma 1 Let Pn�H be corona graph of path graph Pn and graph H, order n ≥ 4, then vertex
coloring edge weighting of Pn �H is µ(Pn �H) ≥ µ(H)

Proof: Let Pn � H be corona graph of path graph Pn and graph H, order n ≥ 4. Its graph
have n subgraph Hi, 1 ≤ i ≤ n. Thus, the edge-weighting of every Hi, 1 ≤ i ≤ n and the
edge-weighting of Pn which can be use the edge weighting in Hi, The edge weighting of the
edges between u ∈ V (Pn) and u ∈ V (Hi) which can be use the edge weighting of Hi such that
we obtain that µ(Pn �H) ≥ µ(H).

Theorem 1 Let Pn � Pm be corona graph of path graph Pn and path graph Pm with n,m ≥ 4,
then vertex coloring edge weighting of graph Pn � Pm is µ(Pn � Pm) = 2.

Proof: Let Pn � Pm be corona graph with vertex set V (Pn � Pm) = {xi, xij ; 1 ≤ i ≤ n; 1 ≤
j ≤ m} and edge set E(Pn � Pm) = {xixi+1; 1 ≤ i ≤ n − 1} ∪ {xixij ; 1 ≤ i ≤ n; 1 ≤ j ≤
m} ∪ {xijxi(j+1); 1 ≤ i ≤ n; 1 ≤ j ≤ m− 1}. The cardinality of vertices and edges, respectively
are |V (Pn�Pm)| = nm+n and |E(Pn�Pm)| = 2nm−1. We prove vertex coloring edge-weighting
of Pn � Pm for n,m ≥ 4 is µ(Pn � Pm) = 2.

We prove that lower bound of vertex coloring edge weighting of Pn � Pm is µ(Pn � Pm) ≥ 2.
Based Lemma 1 and Proposition that the lower bound of vertex coloring edge weighting of
Pn � Pm is µ(Pn � Pm) ≥ µ(Pm) = 2. Thus, we have the lower bound of vertex coloring edge-
weighting of Pn � Pm is µ(Pn � Pm) ≥ 2.
Furthermore, we prove that the upper bound of vertex coloring edge-weighting of Pn � Pm

is µ(Pn � Pm) ≤ 2. We define the vertex coloring 2-edge-weighting of Pn � Pm is function
w : E(Pn � Pm)→ {1, 2}. The vertex coloring 2-edge weighting is

w(e) =

{
1, if e = xixi+1 for i ≡ 1, 2(mod 4), 1 ≤ i ≤ n− 1
2, if e = xixi+1 for i ≡ 0, 3(mod 4), 1 ≤ i ≤ n− 1

w(e) =

{
1, if e = xixij for j odd or j = m, 1 ≤ j ≤ m; 1 ≤ i ≤ n
2, if e = xixij for j even, 1 ≤ j ≤ m; 1 ≤ i ≤ n

w(e) = 1, if e = xijxi(j+1)1 ≤ i ≤ n; 1 ≤ j ≤ m

It is easy to see that the vertex coloring of Pn � Pm are as follows

fw(v) =



3(m−1)
2 + 2, if v = xi for m odd, i = 1

3(m−1)
2 + 3, if v = xi for m odd, i = 2k, k ≥ 1, 1 ≤ i ≤ n

3(m−1)
2 + 4, if v = xi for m odd, i = 2k + 1, k ≥ 1, 1 ≤ i ≤ n

3(m−2)
2 + 3, if v = xi for m even, i = 1

3(m−2)
2 + 4, if v = xi for m even, i = 2k, k ≥ 1, 1 ≤ i ≤ n

3(m−1)
2 + 5, if v = xi for m even, i = 2k + 1, k ≥ 1, 1 ≤ i ≤ n
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Figure 1. Example for the vertex coloring edge weighting of P4 � S10

fw(v) =


2, if v = xij for j = 1,m, 1 ≤ i ≤ n
3, if v = xij for j even, 2 ≤ j ≤ m− 1, 1 ≤ i ≤ n
4, if v = xij for j odd, 2 ≤ j ≤ m− 1, 1 ≤ i ≤ n

We get that fw(v) is vertex coloirng of Pn � Pm. Hence, the upper bound of vertex coloring
edge-weighting of Pn � Pm is µ(Pn � Pm) ≤ 2. Thus, we conclude that µ(Pn � Pm) = 2.

Theorem 2 Let Pn � Sm be corona graph of path graph Pn and star graph Sm with n,m ≥ 4,
then vertex coloring edge weighting of graph Pn � Sm is µ(Pn � Sm) = 2.

Proof: Let Pn � Sm be corona graph with vertex set V (Pn � Sm) = {xi, yi, yij ; 1 ≤ i ≤ n; 1 ≤
j ≤ m} and edge set E(Pn � Sm) = {xixi+1; 1 ≤ i ≤ n − 1} ∪ {xiyij ; 1 ≤ i ≤ n; 1 ≤ j ≤
m} ∪ {xiyi; 1 ≤ i ≤ n} ∪ {yiyij ; 1 ≤ i ≤ n; 1 ≤ j ≤ m}. The cardinality of vertices and edges,
respectively are |V (Pn � Sm)| = nm+ 2n and |E(Pn � Sm)| = 2nm+ 2n− 1. We prove vertex
coloring edge-weighting of Pn � Sm for n,m ≥ 4 is µ(Pn � Sm) = 2.

We prove that lower bound of vertex coloring edge weighting of Pn � Sm is µ(Pn � Sm) ≥ 2.
Based Lemma 1 and Proposition that the lower bound of vertex coloring edge weighting of
Pn�Sm is µ(Pn�Sm) ≥ µ(Sm) = 1. However, we can not attain the sharpest lower bound. We
assume that µ(Pn � Sm) < 2, we have a vertex coloring 1-edge weighting. If the edges assigned
the w(e) = 1 for e ∈ E(Pn � Sm), then the vertices with d(xi) = m + 3 for 2 ≤ i ≤ n − 1 have
fw(xi) = m + 3. The vertices xi and xj for 2 ≤ i, j ≤ n − 1 and j = i + 1 are adjacents and
d(xi) = d(xj) = m + 3, then fw(xi) = fw(xj) = m + 3. It isn’t satisfy the properties of vertex
coloring, it is a contradiction. Thus, we have the lower bound of vertex coloring edge-weighting
of Fn is µ(Pn � Sm) ≥ 2.
Furthermore, we prove that the upper bound of vertex coloring edge-weighting of Pn � Sm
is µ(Pn � Sm) ≤ 2. We define the vertex coloring 2-edge-weighting of Pn � Sm is function
w : E(Pn � Sm)→ {1, 2}. The vertex coloring 2-edge weighting is

w(e) =

{
1, if e = xixi+1 for i ≡ 1, 2(mod 4), 1 ≤ i ≤ n− 1
2, if e = xixi+1 for i ≡ 0, 3(mod 4), 1 ≤ i ≤ n− 1

w(e) =

{
1, if e = xiyij for j odd, 1 ≤ j ≤ m; 1 ≤ i ≤ n
2, if e = xiyij for j even, 1 ≤ j ≤ m; 1 ≤ i ≤ n

w(e) = 1, if e = xiyi; 1 ≤ i ≤ n
w(e) = 1, if e = yiyij ; 1 ≤ i ≤ n; 1 ≤ j ≤ m
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It is easy to see that the vertex coloring of Pn � Sm are as follows

fw(v) =



3(m−1)
2 + 3, if v = xi for m odd, i = 1

3(m−1)
2 + 4, if v = xi for m odd, i = 2k, k ≥ 1, 1 ≤ i ≤ n

3(m−1)
2 + 5, if v = xi for m odd, i = 2k + 1, k ≥ 1, 1 ≤ i ≤ n

3(m−2)
2 + 5, if v = xi for m even, i = 1

3(m−2)
2 + 6, if v = xi for m even, i = 2k, k ≥ 1, 1 ≤ i ≤ n

3(m−1)
2 + 7, if v = xi for m even, i = 2k + 1, k ≥ 1, 1 ≤ i ≤ n

fw(v) =

{
2, if v = yij for j odd, 2 ≤ j ≤ m, 1 ≤ i ≤ n
3, if v = yij for j even, 2 ≤ j ≤ m, 1 ≤ i ≤ n

fw(v) = m+ 1, if v = yi, 1 ≤ i ≤ n
We get that fw(v) is vertex coloring of Pn � Sm. Hence, the upper bound of vertex coloring
edge-weighting of Pn � Sm is µ(Pn � Sm) ≤ 2. Thus, we conclude that µ(Pn � Sm) = 2.

Theorem 3 Let Pn � Fm be corona graph of path graph Pn and fan graph Fm with n,m ≥ 4,
then vertex coloring edge weighting of graph Pn � Fm is µ(Pn � Fm) = 2.

Proof: Let Pn�Fm be corona graph with vertex set V (Pn�Fm) = {xi, yi, yij ; 1 ≤ i ≤ n; 1 ≤ j ≤
m} and edge set E(Pn�Fm) = {xixi+1; 1 ≤ i ≤ n−1}∪{xiyij ; 1 ≤ i ≤ n; 1 ≤ j ≤ m}∪{xiyi; 1 ≤
i ≤ n}∪{yiyij ; 1 ≤ i ≤ n; 1 ≤ j ≤ m}∪{yijyi(j+1); 1 ≤ i ≤ n; 1 ≤ j ≤ m−1}. The cardinality of
vertices and edges, respectively are |V (Pn � Fm)| = nm+ 2n and |E(Pn � Fm)| = 3nm+ n− 1.
We prove vertex coloring edge-weighting of Pn � Fm for n,m ≥ 4 is µ(Pn � Fm) = 2.

We prove that lower bound of vertex coloring edge weighting of Pn � Fm is µ(Pn � Fm) ≥ 2.
Based Lemma 1 and Proposition that the lower bound of vertex coloring edge weighting of
Pn � Fm is µ(Pn � Fm) ≥ µ(Fm) = 2. Thus, we have the lower bound of vertex coloring edge-
weighting of Pn � Fm is µ(Pn � Fm) ≥ 2.
Furthermore, we prove that the upper bound of vertex coloring edge-weighting of Pn � Fm

is µ(Pn � Fm) ≤ 2. We define the vertex coloring 2-edge-weighting of Pn � Fm is function
w : E(Pn � Fm)→ {1, 2}. The vertex coloring 2-edge weighting is

w(e) =

{
1, if e = xixi+1 for i ≡ 1, 2(mod 4), 1 ≤ i ≤ n− 1
2, if e = xixi+1 for i ≡ 0, 3(mod 4), 1 ≤ i ≤ n− 1

w(e) =

{
1, if e = xiyij for j odd, 1 ≤ j ≤ m; 1 ≤ i ≤ n
2, if e = xiyij for j even, 1 ≤ j ≤ m; 1 ≤ i ≤ n

w(e) =

{
1, if e = yiyij for j odd, 1 ≤ j ≤ m; 1 ≤ i ≤ n
2, if e = yiyij for j even, 1 ≤ j ≤ m; 1 ≤ i ≤ n

w(e) = 1, if e = xiyi; 1 ≤ i ≤ n
w(e) = 1, if e = yijyi(j+1); 1 ≤ i ≤ n; 1 ≤ j ≤ m

It is easy to see that the vertex coloring of Pn � Fm are as follows

fw(v) =



3(m−1)
2 + 3, if v = xi for m odd, i = 1

3(m−1)
2 + 4, if v = xi for m odd, i = 2k, k ≥ 1, 1 ≤ i ≤ n

3(m−1)
2 + 5, if v = xi for m odd, i = 2k + 1, k ≥ 1, 1 ≤ i ≤ n

3(m−2)
2 + 5, if v = xi for m even, i = 1

3(m−2)
2 + 6, if v = xi for m even, i = 2k, k ≥ 1, 1 ≤ i ≤ n

3(m−1)
2 + 7, if v = xi for m even, i = 2k + 1, k ≥ 1, 1 ≤ i ≤ n
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fw(v) =

{
3(m−1)

2 + 2, if v = yi for m odd, 1 ≤ i ≤ n
3(m−2)

2 + 4, if v = yi for m even, 1 ≤ i ≤ n

fw(v) =


3, if v = yij for j = 1, 1 ≤ i ≤ n
3, if v = yij for j = m,m odd, 1 ≤ i ≤ n
5, if v = yij for j = m,m even, 1 ≤ i ≤ n
6, if v = yij for j even, 2 ≤ j ≤ m− 1; 1 ≤ i ≤ n
4, if v = yij for j odd, 2 ≤ j ≤ m− 1; 1 ≤ i ≤ n

We get that fw(v) is vertex coloring of Pn � Fm. Hence, the upper bound of vertex coloring
edge-weighting of Pn � Fm is µ(Pn � Fm) ≤ 2. Thus, we conclude that µ(Pn � Fm) = 2.

Theorem 4 Let Pn �Cm be corona graph of path graph Pn and cycle graph Cm with n,m ≥ 3,
then vertex coloring edge weighting of graph Pn � Cm is

µ(G) =

{
2, for m ≡ 0(mod 4)
3, for m else

Proof: Let Pn � Cm be corona graph with vertex set V (Pn � Cm) = {xi, xij ; 1 ≤ i ≤ n; 1 ≤
j ≤ m} and edge set E(Pn � Cm) = {xixi+1; 1 ≤ i ≤ n − 1} ∪ {xijxi(j+1); 1 ≤ i ≤ n; 1 ≤ j ≤
m − 1} ∪ {xi1xim; 1 ≤ i ≤ n} ∪ {xixij ; 1 ≤ i ≤ n; 1 ≤ j ≤ m}. The cardinality of vertices and
edges, respectively are |V (Pn � Cm)| = nm + n and |E(Pn � Cm)| = 2nm + n − 1. We prove
vertex coloring edge-weighting of Pn � Cm for n,m ≥ 4 is µ(Pn � Cm) = 2 for m ≡ 0(mod 4)
and µ(Pn � Cm) = 3 for m else.
Case 1: For m ≡ 0(mod4), We prove that lower bound of vertex coloring edge weighting of
Pn � Cm is µ(Pn � Cm) ≥ 2. Based Lemma 1 and Proposition that the lower bound of vertex
coloring edge weighting of Pn�Cm is µ(Pn�Cm) ≥ µ(Cm) = 2. Thus, we have the lower bound
of vertex coloring edge-weighting of Pn � Cm is µ(Pn � Cm) ≥ 2.
Furthermore, we prove that the upper bound of vertex coloring edge-weighting of Pn � Cm

is µ(Pn � Cm) ≤ 2. We define the vertex coloring 2-edge-weighting of Pn � Cm is function
w : E(Pn � Cm)→ {1, 2}. The vertex coloring 2-edge weighting is

w(e) =

{
1, if e = xixi+1 for i ≡ 1, 2(mod 4), 1 ≤ i ≤ n− 1
2, if e = xixi+1 for i ≡ 0, 3(mod 4), 1 ≤ i ≤ n− 1

w(e) =

{
1, if e = xixij for j odd, 1 ≤ j ≤ m; 1 ≤ i ≤ n
2, if e = xixij for j even, 1 ≤ j ≤ m; 1 ≤ i ≤ n

w(e) =

{
1, if e = xijxi(j+1) for j odd, 1 ≤ j ≤ m− 1; 1 ≤ i ≤ n
2, if e = xijxi(j+1) for j even, 1 ≤ j ≤ m− 1; 1 ≤ i ≤ n

w(e) = 2, if e = xi1xim; 1 ≤ i ≤ n

It is easy to see that the vertex coloring of Pn � Cm are as follows

fw(v) = 3m
2 + 1, if v = xi, i = 1

fw(v) = 3m
2 + 2, if v = xi, i = 2k, k ≥ 1, 1 ≤ i ≤ n

fw(v) = 3m
2 + 3, if v = xi, i = 2k + 1, k ≥ 1, 1 ≤ i ≤ n

fw(v) =

{
4, if v = xij for j odd, 1 ≤ j ≤ m; 1 ≤ i ≤ n
5, if v = xij for j even, 1 ≤ j ≤ m; 1 ≤ i ≤ n

We get that fw(v) is vertex coloring of Pn � Cm. Hence, the upper bound of vertex coloring
edge-weighting of Pn � Cm for m ≡ 0(mod 4) is µ(Pn � Cm) ≤ 2. Thus, we conclude that
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µ(Pn � Cm) = 2 for m ≡ 0(mod 4).

Case 2: For m 6= 0(mod4), We prove that lower bound of vertex coloring edge weighting of
Pn � Cm is µ(Pn � Cm) ≥ 3. Based Lemma 1 and Proposition that the lower bound of vertex
coloring edge weighting of Pn�Cm is µ(Pn�Cm) ≥ µ(Cm) = 3. Thus, we have the lower bound
of vertex coloring edge-weighting of Pn � Cm is µ(Pn � Cm) ≥ 3.
Furthermore, we prove that the upper bound of vertex coloring edge-weighting of Pn � Cm

is µ(Pn � Cm) ≤ 3. We define the vertex coloring 2-edge-weighting of Pn � Cm is function
w : E(Pn � Cm)→ {1, 2, 3}. The vertex coloring 3-edge weighting is

w(e) =

{
1, if e = xixi+1 for i ≡ 1, 2(mod 4), 1 ≤ i ≤ n− 1
2, if e = xixi+1 for i ≡ 0, 3(mod 4), 1 ≤ i ≤ n− 1

w(e) =


1, if e = xixij for i ≡ 1(mod 3), 1 ≤ j ≤ m; 1 ≤ i ≤ n
2, if e = xixij for i ≡ 2(mod 3), 1 ≤ j ≤ m; 1 ≤ i ≤ n
3, if e = xixij for i ≡ 0(mod 3), 1 ≤ j ≤ m; 1 ≤ i ≤ n

w(e) =

{
1, if e = xijxi(j+1) for j odd, 1 ≤ j ≤ m− 1; 1 ≤ i ≤ n
2, if e = xijxi(j+1) for j even, 1 ≤ j ≤ m− 1; 1 ≤ i ≤ n

w(e) =

{
1, if e = xi1xim for j odd, 1 ≤ i ≤ n
2, if e = xi1xim for j even, 1 ≤ i ≤ n

It is easy to see that the vertex coloring of Pn � Cm are as follows

fw(v) =

{
2m+ i, if v = xi for m = 3k, k ≥ 1, 1 ≤ i ≤ n
2m− 1 + i, if v = xi for m 6= 3k, k ≥ 1, 1 ≤ i ≤ n

for m is odd

fw(v) =


3, if v = xij for j = 1, 1 ≤ i ≤ n
5, if v = xij for j ≡ 2(mod 4), 1 ≤ j ≤ m; 1 ≤ i ≤ n
6, if v = xij for j ≡ 3(mod 4), 1 ≤ j ≤ m; 1 ≤ i ≤ n
4, if v = xij for j ≡ 0(mod 4), 1 ≤ j ≤ m; 1 ≤ i ≤ n

for m is even

fw(v) =


4, if v = xij for j ≡ 1(mod 3), 1 ≤ j ≤ m; 1 ≤ i ≤ n
5, if v = xij for j ≡ 2(mod 3), 1 ≤ j ≤ m; 1 ≤ i ≤ n
6, if v = xij for j ≡ 0(mod 3), 1 ≤ j ≤ m; 1 ≤ i ≤ n

We get that fw(v) is vertex coloring of Pn � Cm. Hence, the upper bound of vertex coloring
edge-weighting of Pn�Cm for m else is µ(Pn�Cm) ≤ 3. Thus, we conclude that µ(Pn�Fm) = 3
for m 6= 0(mod4). It conclude the proof.

Theorem 5 Let Pn�Wm be corona graph of path graph Pn and wheel graph Wm with n,m ≥ 4,
then vertex coloring edge weighting of graph Pn �Wm is µ(Pn �Wm) = 2.

Proof: Let Pn � Wm be corona graph with vertex set V (Pn � Wm) = {xi, yi, yij ; 1 ≤ i ≤
n; 1 ≤ j ≤ m} and edge set E(Pn �Wm) = {xixi+1; 1 ≤ i ≤ n − 1} ∪ {xiyij ; 1 ≤ i ≤ n; 1 ≤
j ≤ m} ∪ {xiyi; 1 ≤ i ≤ n} ∪ {yiyij ; 1 ≤ i ≤ n; 1 ≤ j ≤ m} ∪ {yijyi(j+1); 1 ≤ i ≤ n; 1 ≤ j ≤
m−1}∪{yi1yim}. The cardinality of vertices and edges, respectively are |V (Pn�Wm)| = nm+2n
and |E(Pn�Wm)| = 3nm+n. We prove vertex coloring edge-weighting of Pn�Wm for n,m ≥ 4
is µ(Pn �Wm) = 2.
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We prove that lower bound of vertex coloring edge weighting of Pn�Wm is µ(Pn�Wm) ≥ 2.
Based Lemma 1 and Proposition that the lower bound of vertex coloring edge weighting of
Pn � Wm is µ(Pn � Wm) ≥ µ(Cm) = 2. Thus, we have the lower bound of vertex coloring
edge-weighting of Pn �Wm is µ(Pn �Wm) ≥ 2.
Furthermore, we prove that the upper bound of vertex coloring edge-weighting of Pn � Wm

is µ(Pn �Wm) ≤ 2. We define the vertex coloring 2-edge-weighting of Pn �Wm is function
w : E(Pn �Wm)→ {1, 2}. The vertex coloring 2-edge weighting is

w(e) =

{
1, if e = xixi+1 for i ≡ 1, 2(mod 4), 1 ≤ i ≤ n− 1
2, if e = xixi+1 for i ≡ 0, 3(mod 4), 1 ≤ i ≤ n− 1

w(e) =

{
1, if e = xiyij for j odd, 1 ≤ j ≤ m; 1 ≤ i ≤ n
2, if e = xiyij for j even, 1 ≤ j ≤ m; 1 ≤ i ≤ n

w(e) =

{
1, if e = yiyij for j odd, 1 ≤ j ≤ m; 1 ≤ i ≤ n
2, if e = yiyij for j even, 1 ≤ j ≤ m; 1 ≤ i ≤ n

w(e) =

{
1, if e = yijyi(j+1 for j odd, 1 ≤ j ≤ m− 1; 1 ≤ i ≤ n
2, if e = yijyi(j+1 for j even, 1 ≤ j ≤ m− 1; 1 ≤ i ≤ n

w(e) =

{
1, if e = yiyim for m odd, 1 ≤ i ≤ n
2, if e = yiyim for m even, 1 ≤ i ≤ n

w(e) = 2, if e = xiyi; 1 ≤ i ≤ n

It is easy to see that the vertex coloring of Pn �Wm are as follows

fw(v) =


7 + i, if v = xi for m = 3, 1 ≤ i ≤ n
3(m−2)

2 + 5 + i, if v = xi for m even, 1 ≤ i ≤ n
3(m−3)

2 + 6 + i, if v = xi for m odd, 1 ≤ i ≤ n

fw(v) =

{
3(m−1)

2 + 3, if v = yi for m odd, 1 ≤ i ≤ n
3(m−2)

2 + 5, if v = yi for m even, 1 ≤ i ≤ n

fw(v) =


4, if v = yij for j = 1,m = 3, 1 ≤ i ≤ n
5, if v = yij for j odd, 1 ≤ j ≤ m; 1 ≤ i ≤ n
7, if v = yij for j even, 1 ≤ j ≤ m; 1 ≤ i ≤ n

We get that fw(v) is vertex coloring of Pn �Wm. Hence, the upper bound of vertex coloring
edge-weighting of Pn �Wm is µ(Pn �Wm) ≤ 2. Thus, we conclude that µ(Pn �Wm) = 2.

3. Conclusion
In this paper we have given the lower bound of vertex coloring edge weighting of path corona
graph H. We have concluded the exact value of vertex coloring edge-weighting of path corona
several graphs, namely µ(Pn � Pm) = µ(Pn � Sm) = µ(Pn � Fm) = µ(Pn � Wm) = 2, but
µ(Pn � Cm) = 2 for m ≡ 2(mod 4). Hence the following problem arises naturally.

Open Problem 1 Determine lower and upper bound of the vertex coloring edge weighting of
graph corona the others graph?

Open Problem 2 Determine lower and upper bound of the vertex coloring edge weighting of
graph operation including cartesian, comb product and others?

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/


ICCGANT 2018

IOP Conf. Series: Journal of Physics: Conf. Series 1211 (2019) 012004

IOP Publishing

doi:10.1088/1742-6596/1211/1/012004

8

Acknowledgement
We gratefully acknowledge the support from CGANT - University of Jember of year 2018.

References

[1] R. Adawiyah, Dafik, I. H. Agustin, A. I. Kristiana, and R. Alfarisi 2018 Some unicyclic graphs and its vertex

coloring edge-weighting, AIP Conference Proceedings 2014:020057

[2] L.Addario-Berry, K. Dalal, Colin Mcdiarmid, Bruc A. Reed, Andrew Thomason 2007 Vertex-colouring edge

weightings, Combinatorica 27 (1):1–12

[3] Gerand J. Chang, Changhong Lu, Jiaojiao Wu, Qinglin Yu 2007 Vertex-coloring edge weightings of graphs,

Taiwanese Journal of Mathematics 15 (4):1807–1813

[4] Chartrand G and Lesniak L, 2000 Graphs and digraphs 3rd ed (London: Chapman and Hall)

[5] Dafik, R. Alfarisi, A. I. Kristiana, R. Adawiyah, and I. H. Agustin 2018 Vertex coloring edge-weighting of

some wheel related of graphs, AIP Conference Proceedings 2014:020084

[6] Andrzej Dudek, David Wajc 2011 On the complexity of vertex-coloring, Discret Mathematics and Theoretical

Computer Science 13 (3):45–50

[7] Gross J L, Yellen J and Zhang P 2014 Handbook of graph Theory Second Edition CRC Press Taylor and

Francis Group

[8] Hongliang Lu, Vertex coloring edge weighting of bipartite graphs with two edge weights,

arXiv:1307.1863v1[Math.Co]

[9] Hongliang Lu, Qinglin Yu, Cun-Quan Zhang 2011 Vertex-coloring 2 edge weighting of graphs, European

Journal of Combinatorics 32:21–27

[10] Tao Wang, Qinglin Yu 2008 On vertex-colouring 13-edge weightings, Front. Math. China 3 (4):581–587

[11] Yezhow Wu, Cun-Quan Zhang, Bao-Xuan Zhu 2017 Vertex-coloring 3 edge weighting of some graphs, Discret

Mathematics 340:154–159

Digital Repository Universitas Jember

http://repository.unej.ac.id/
http://repository.unej.ac.id/

