PAPER • OPEN ACCESS

Vertex coloring edge-weighting of coronation by path graphs

To cite this article: A. I. Kristiana et al 2019 J. Phys.: Conf. Ser. 1211 012004

View the article online for updates and enhancements.

IOP ebooks™

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

ICCGANT 2018

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series **1211** (2019) 012004 doi:10.1088/1742-6596/1211/1/012004

Vertex coloring edge-weighting of coronation by path graphs

A. I. Kristiana^{1,2,3}, M. I. Utoyo³, Dafik^{1,2}, I. H. Agustin^{1,2}, R. Alfarisi^{1,2}, E. Waluyo⁴

¹CGANT University of Jember, Jember, Indonesia

²University of Jember, Jember, Indonesia

³University of Airlangga, Surabaya, Indonesia

⁴Islamic Institute of Zainul Hasan, Probolinggo, Indonesia

E-mail: m.i.utoyo@fst.unair.ac.id

Abstract. In this paper, we study vertex coloring edge of corona graph. A k-edge weigting of graph G is mapping $w : (EG) \to \{1, 2, \dots, k\}$. An edge-weighting w induces a vertex coloring $F_w : V(G) \to N$ defined by $f_w(v) = \sum_{v \in e} w(e)$. An edge-weighting w is vertex coloring if $f_w(u) \neq f_w(v)$ for any edge uv. Chang, et.al denoted by $\mu(G)$ the minimum k for which G has a vertex-coloring k-edge-weighting. In this paper, we obtain the lower bound of of vertex coloring edge-weighting of $P_n \odot H$ and we study the exact value of vertex coloring edge-weighting of path corona several graph.

1. Introduction

Let G be a nontrivial, finite, simple, undirected and connected graphs, with vertex set V(G), edge set E(G) and with no isolated vertex, for more detail definition of graph see [7, 4]. Chang, et.al in [3] introduced a k-edge weigting of graph G is mapping $w: (EG) \to \{1, 2, \cdots, k\}$. An edge-weighting w induces a vertex coloring $F_w: V(G) \to N$ defined by $f_w(v) = \sum_{v \in e} w(e)$. An edge-weighting w is vertex coloring if $f_w(u) \neq f_w(v)$ for any edge uv. Chang, et.al denoted by $\mu(G)$ the minimum k for which G has a vertex-coloring k-edge-weighting. The study of vertex coloring from an edge weighting see in [1], [3], [5], [6], [9], and [11]. Hongliang Lu, et.al in [9] obtained several simple sufficient conditions for graphs to be vertex-coloring 3 edge weighting. Dudek, et.al in [6] showed that deterning whether a particular graph has a weighting of the edges that induces a proper vertex coloring is NP-complete. Chang, et.al in [3] proved $\mu(P_3), \mu(P_n), \mu(C_n), \mu(K_n)$ and $\mu(K_{m,n})$. Yezhow Wu, et.al in [11] found every 4 edge connected 4 colorable multigraph G admits a vertex coloring 3-edge weighting. Futhermore, Adawiyah, et.al in [1] discussed some unicyclic graphs and its vertex coloring edge-weighting and Dafik, et.al in [5] found vertex coloring edge-weighting of some wheel related of graphs.

Proposition 1 [3] Let G be a connected graph, then we have

• $\mu(P_3) = 1$ and $\mu(P_n) = 2$ for $n \ge 4$

- $\mu(C_n) = 2$ for $n \equiv 0 \pmod{4}$ and $\mu(C_n) = 3$ for $n \neq 0 \pmod{4}$
- $\mu(K_{m,n}) = 1$ for $m \neq n$ and $\mu(K_{m,n}) = 2$ for $m = n \geq 2$
- $\mu(W_n) = 2$ for $n \ge 4$

ICCGANT 2018

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1211 (2019) 012004 doi:10.1088/1742-6596/1211/1/012004

• $\mu(F_n) = 2$ for $n \ge 4$

For any two graphs G and H. A coronation of G and H, denoted by $G \odot H$, is a connected graph which formed by taking n copies of graphs H_i , $1 \le i \le n$ of H and connecting *i*-th vertex of G to the vertices of H_i .

2. The Results

We will obtain the lower bound of vertex coloring edge weighting of path corona graph H and we study the exact value of vertex coloring edge-weighting of path corona several graphs, namely $\mu(P_n \odot P_m), \mu(P_n \odot S_m), \mu(P_n \odot F_m), \mu(P_n \odot C_m)$ and $\mu(P_n \odot W_m)$.

Lemma 1 Let $P_n \odot H$ be corona graph of path graph P_n and graph H, order $n \ge 4$, then vertex coloring edge weighting of $P_n \odot H$ is $\mu(P_n \odot H) \ge \mu(H)$

Proof: Let $P_n \odot H$ be corona graph of path graph P_n and graph H, order $n \ge 4$. Its graph have n subgraph H_i , $1 \le i \le n$. Thus, the edge-weighting of every H_i , $1 \le i \le n$ and the edge-weighting of P_n which can be use the edge weighting in H_i . The edge weighting of the edges between $u \in V(P_n)$ and $u \in V(H_i)$ which can be use the edge weighting of H_i such that we obtain that $\mu(P_n \odot H) \ge \mu(H)$.

Theorem 1 Let $P_n \odot P_m$ be corona graph of path graph P_n and path graph P_m with $n, m \ge 4$, then vertex coloring edge weighting of graph $P_n \odot P_m$ is $\mu(P_n \odot P_m) = 2$.

Proof: Let $P_n \odot P_m$ be corona graph with vertex set $V(P_n \odot P_m) = \{x_i, x_{ij}; 1 \le i \le n; 1 \le j \le m\}$ and edge set $E(P_n \odot P_m) = \{x_i x_{i+1}; 1 \le i \le n-1\} \cup \{x_i x_{ij}; 1 \le i \le n; 1 \le j \le m\} \cup \{x_{ij} x_{i(j+1)}; 1 \le i \le n; 1 \le j \le m-1\}$. The cardinality of vertices and edges, respectively are $|V(P_n \odot P_m)| = nm + n$ and $|E(P_n \odot P_m)| = 2nm - 1$. We prove vertex coloring edge-weighting of $P_n \odot P_m$ for $n, m \ge 4$ is $\mu(P_n \odot P_m) = 2$.

We prove that lower bound of vertex coloring edge weighting of $P_n \odot P_m$ is $\mu(P_n \odot P_m) \ge 2$. Based Lemma 1 and Proposition that the lower bound of vertex coloring edge weighting of $P_n \odot P_m$ is $\mu(P_n \odot P_m) \ge \mu(P_m) = 2$. Thus, we have the lower bound of vertex coloring edge-weighting of $P_n \odot P_m$ is $\mu(P_n \odot P_m) \ge \mu(P_n \odot P_m) \ge 2$.

Furthermore, we prove that the upper bound of vertex coloring edge-weighting of $P_n \odot P_m$ is $\mu(P_n \odot P_m) \leq 2$. We define the vertex coloring 2-edge-weighting of $P_n \odot P_m$ is function $w: E(P_n \odot P_m) \rightarrow \{1, 2\}$. The vertex coloring 2-edge weighting is

$$w(e) = \begin{cases} 1, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 1, 2 \pmod{4}, 1 \leq i \leq n-1 \\ 2, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 0, 3 \pmod{4}, 1 \leq i \leq n-1 \end{cases}$$
$$w(e) = \begin{cases} 1, & \text{if } e = x_i x_{ij} \text{ for } j \text{ odd or } j = m, 1 \leq j \leq m; 1 \leq i \leq n \\ 2, & \text{if } e = x_i x_{ij} \text{ for } j \text{ even}, 1 \leq j \leq m; 1 \leq i \leq n \end{cases}$$
$$w(e) = 1, \text{ if } e = x_{ij} x_{i(j+1)} 1 \leq i \leq n; 1 \leq j \leq m \end{cases}$$

It is easy to see that the vertex coloring of $P_n \odot P_m$ are as follows

$$f_w(v) = \begin{cases} \frac{3(m-1)}{2} + 2, & \text{if } v = x_i \text{ for } m \text{ odd, } i = 1\\ \frac{3(m-1)}{2} + 3, & \text{if } v = x_i \text{ for } m \text{ odd, } i = 2k, k \ge 1, 1 \le i \le n\\ \frac{3(m-1)}{2} + 4, & \text{if } v = x_i \text{ for } m \text{ odd, } i = 2k + 1, k \ge 1, 1 \le i \le n\\ \frac{3(m-2)}{2} + 3, & \text{if } v = x_i \text{ for } m \text{ even, } i = 1\\ \frac{3(m-2)}{2} + 4, & \text{if } v = x_i \text{ for } m \text{ even, } i = 2k, k \ge 1, 1 \le i \le n\\ \frac{3(m-1)}{2} + 5, & \text{if } v = x_i \text{ for } m \text{ even, } i = 2k + 1, k \ge 1, 1 \le i \le n \end{cases}$$

ICCGANT 2018

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1211 (2019) 012004 doi:10.1088/1742-6596/1211/1/012004

Figure 1. Example for the vertex coloring edge weighting of $P_4 \odot S_{10}$

 $f_w(v) = \begin{cases} 2, & \text{if } v = x_{ij} \text{ for } j = 1, m, 1 \le i \le n \\ 3, & \text{if } v = x_{ij} \text{ for } j \text{ even}, 2 \le j \le m - 1, 1 \le i \le n \\ 4, & \text{if } v = x_{ij} \text{ for } j \text{ odd}, 2 \le j \le m - 1, 1 \le i \le n \end{cases}$

We get that $f_w(v)$ is vertex coloirng of $P_n \odot P_m$. Hence, the upper bound of vertex coloring edge-weighting of $P_n \odot P_m$ is $\mu(P_n \odot P_m) \leq 2$. Thus, we conclude that $\mu(P_n \odot P_m) = 2$.

Theorem 2 Let $P_n \odot S_m$ be corona graph of path graph P_n and star graph S_m with $n, m \ge 4$, then vertex coloring edge weighting of graph $P_n \odot S_m$ is $\mu(P_n \odot S_m) = 2$.

Proof: Let $P_n \odot S_m$ be corona graph with vertex set $V(P_n \odot S_m) = \{x_i, y_i, y_{ij}; 1 \le i \le n; 1 \le j \le m\}$ and edge set $E(P_n \odot S_m) = \{x_i x_{i+1}; 1 \le i \le n-1\} \cup \{x_i y_{ij}; 1 \le i \le n; 1 \le j \le m\} \cup \{x_i y_i; 1 \le i \le n\} \cup \{y_i y_{ij}; 1 \le i \le n; 1 \le j \le m\}$. The cardinality of vertices and edges, respectively are $|V(P_n \odot S_m)| = nm + 2n$ and $|E(P_n \odot S_m)| = 2nm + 2n - 1$. We prove vertex coloring edge-weighting of $P_n \odot S_m$ for $n, m \ge 4$ is $\mu(P_n \odot S_m) = 2$.

We prove that lower bound of vertex coloring edge weighting of $P_n \odot S_m$ is $\mu(P_n \odot S_m) \ge 2$. Based Lemma 1 and Proposition that the lower bound of vertex coloring edge weighting of $P_n \odot S_m$ is $\mu(P_n \odot S_m) \ge \mu(S_m) = 1$. However, we can not attain the sharpest lower bound. We assume that $\mu(P_n \odot S_m) < 2$, we have a vertex coloring 1-edge weighting. If the edges assigned the w(e) = 1 for $e \in E(P_n \odot S_m)$, then the vertices with $d(x_i) = m + 3$ for $2 \le i \le n - 1$ have $f_w(x_i) = m + 3$. The vertices x_i and x_j for $2 \le i, j \le n - 1$ and j = i + 1 are adjacents and $d(x_i) = d(x_j) = m + 3$, then $f_w(x_i) = f_w(x_j) = m + 3$. It isn't satisfy the properties of vertex coloring, it is a contradiction. Thus, we have the lower bound of vertex coloring edge-weighting of F_n is $\mu(P_n \odot S_m) \ge 2$.

Furthermore, we prove that the upper bound of vertex coloring edge-weighting of $P_n \odot S_m$ is $\mu(P_n \odot S_m) \leq 2$. We define the vertex coloring 2-edge-weighting of $P_n \odot S_m$ is function $w: E(P_n \odot S_m) \to \{1, 2\}$. The vertex coloring 2-edge weighting is

$$w(e) = \begin{cases} 1, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 1, 2 \pmod{4}, 1 \le i \le n-1 \\ 2, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 0, 3 \pmod{4}, 1 \le i \le n-1 \end{cases}$$
$$w(e) = \begin{cases} 1, & \text{if } e = x_i y_{ij} \text{ for } j \text{ odd}, 1 \le j \le m; 1 \le i \le n \\ 2, & \text{if } e = x_i y_{ij} \text{ for } j \text{ even}, 1 \le j \le m; 1 \le i \le n \\ w(e) = 1, \text{ if } e = x_i y_i; 1 \le i \le n \end{cases}$$

$$w(e) = 1$$
, if $e = y_i y_{ij}; 1 \le i \le n; 1 \le j \le m$

ICCGANT 2018

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1211 (2019) 012004 doi:10.1088/1742-6596/1211/1/012004

It is easy to see that the vertex coloring of $P_n \odot S_m$ are as follows

$$f_w(v) = \begin{cases} \frac{3(m-1)}{2} + 3, & \text{if } v = x_i \text{ for } m \text{ odd, } i = 1\\ \frac{3(m-1)}{2} + 4, & \text{if } v = x_i \text{ for } m \text{ odd, } i = 2k, k \ge 1, 1 \le i \le n\\ \frac{3(m-1)}{2} + 5, & \text{if } v = x_i \text{ for } m \text{ odd, } i = 2k + 1, k \ge 1, 1 \le i \le n\\ \frac{3(m-2)}{2} + 5, & \text{if } v = x_i \text{ for } m \text{ even, } i = 1\\ \frac{3(m-2)}{2} + 6, & \text{if } v = x_i \text{ for } m \text{ even, } i = 2k, k \ge 1, 1 \le i \le n\\ \frac{3(m-1)}{2} + 7, & \text{if } v = x_i \text{ for } m \text{ even, } i = 2k + 1, k \ge 1, 1 \le i \le n \end{cases}$$

$$f_w(v) = \begin{cases} 2, & \text{if } v = y_{ij} \text{ for } j \text{ odd, } 2 \le j \le m, 1 \le i \le n \\ 3, & \text{if } v = y_{ij} \text{ for } j \text{ even, } 2 \le j \le m, 1 \le i \le n \end{cases}$$

$$f_w(v) = m + 1$$
, if $v = y_i, 1 \le i \le n$

We get that $f_w(v)$ is vertex coloring of $P_n \odot S_m$. Hence, the upper bound of vertex coloring edge-weighting of $P_n \odot S_m$ is $\mu(P_n \odot S_m) \leq 2$. Thus, we conclude that $\mu(P_n \odot S_m) = 2$.

Theorem 3 Let $P_n \odot F_m$ be corona graph of path graph P_n and fan graph F_m with $n, m \ge 4$, then vertex coloring edge weighting of graph $P_n \odot F_m$ is $\mu(P_n \odot F_m) = 2$.

Proof: Let $P_n \odot F_m$ be corona graph with vertex set $V(P_n \odot F_m) = \{x_i, y_i, y_{ij}; 1 \le i \le n; 1 \le j \le m\}$ and edge set $E(P_n \odot F_m) = \{x_i x_{i+1}; 1 \le i \le n-1\} \cup \{x_i y_{ij}; 1 \le i \le n; 1 \le j \le m\} \cup \{x_i y_i; 1 \le i \le n\} \cup \{y_i y_{ij}; 1 \le i \le n; 1 \le j \le m\} \cup \{y_i y_{ij}; 1 \le i \le n; 1 \le j \le m\} \cup \{y_i y_{ij+1}; 1 \le i \le n; 1 \le j \le m-1\}$. The cardinality of vertices and edges, respectively are $|V(P_n \odot F_m)| = nm + 2n$ and $|E(P_n \odot F_m)| = 3nm + n - 1$. We prove vertex coloring edge-weighting of $P_n \odot F_m$ for $n, m \ge 4$ is $\mu(P_n \odot F_m) = 2$.

We prove that lower bound of vertex coloring edge weighting of $P_n \odot F_m$ is $\mu(P_n \odot F_m) \ge 2$. Based Lemma 1 and Proposition that the lower bound of vertex coloring edge weighting of $P_n \odot F_m$ is $\mu(P_n \odot F_m) \ge \mu(F_m) = 2$. Thus, we have the lower bound of vertex coloring edge-weighting of $P_n \odot F_m$ is $\mu(P_n \odot F_m) \ge 2$.

Furthermore, we prove that the upper bound of vertex coloring edge-weighting of $P_n \odot F_m$ is $\mu(P_n \odot F_m) \leq 2$. We define the vertex coloring 2-edge-weighting of $P_n \odot F_m$ is function $w: E(P_n \odot F_m) \to \{1, 2\}$. The vertex coloring 2-edge weighting is

$$w(e) = \begin{cases} 1, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 1, 2 \pmod{4}, 1 \leq i \leq n-1 \\ 2, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 0, 3 \pmod{4}, 1 \leq i \leq n-1 \end{cases}$$

$$w(e) = \begin{cases} 1, & \text{if } e = x_i y_{ij} \text{ for } j \text{ odd}, 1 \leq j \leq m; 1 \leq i \leq n \\ 2, & \text{if } e = x_i y_{ij} \text{ for } j \text{ even}, 1 \leq j \leq m; 1 \leq i \leq n \end{cases}$$

$$w(e) = \begin{cases} 1, & \text{if } e = y_i y_{ij} \text{ for } j \text{ odd}, 1 \leq j \leq m; 1 \leq i \leq n \\ 2, & \text{if } e = y_i y_{ij} \text{ for } j \text{ odd}, 1 \leq j \leq m; 1 \leq i \leq n \end{cases}$$

$$w(e) = \begin{cases} 1, & \text{if } e = y_i y_{ij} \text{ for } j \text{ odd}, 1 \leq j \leq m; 1 \leq i \leq n \\ 2, & \text{if } e = y_i y_{ij} \text{ for } j \text{ even}, 1 \leq j \leq m; 1 \leq i \leq n \end{cases}$$

$$w(e) = 1, \text{ if } e = x_i y_i; 1 \leq i \leq n$$

$$w(e) = 1, \text{ if } e = y_i y_{i(j+1)}; 1 \leq i \leq n; 1 \leq j \leq m \end{cases}$$

It is easy to see that the vertex coloring of $P_n \odot F_m$ are as follows

$$f_w(v) = \begin{cases} \frac{3(m-1)}{2} + 3, & \text{if } v = x_i \text{ for } m \text{ odd, } i = 1\\ \frac{3(m-1)}{2} + 4, & \text{if } v = x_i \text{ for } m \text{ odd, } i = 2k, k \ge 1, 1 \le i \le n\\ \frac{3(m-1)}{2} + 5, & \text{if } v = x_i \text{ for } m \text{ odd, } i = 2k + 1, k \ge 1, 1 \le i \le n\\ \frac{3(m-2)}{2} + 5, & \text{if } v = x_i \text{ for } m \text{ even, } i = 1\\ \frac{3(m-2)}{2} + 6, & \text{if } v = x_i \text{ for } m \text{ even, } i = 2k, k \ge 1, 1 \le i \le n\\ \frac{3(m-1)}{2} + 7, & \text{if } v = x_i \text{ for } m \text{ even, } i = 2k + 1, k \ge 1, 1 \le i \le n \end{cases}$$

ICCGANT 2018

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1211 (2019) 012004 doi:10.1088/1742-6596/1211/1/012004

$$f_w(v) = \begin{cases} \frac{3(m-1)}{2} + 2, & \text{if } v = y_i \text{ for } m \text{ odd, } 1 \le i \le n \\ \frac{3(m-2)}{2} + 4, & \text{if } v = y_i \text{ for } m \text{ even, } 1 \le i \le n \end{cases}$$

$$f_w(v) = \begin{cases} 3, & \text{if } v = y_{ij} \text{ for } j = 1, 1 \le i \le n \\ 3, & \text{if } v = y_{ij} \text{ for } j = m, m \text{ odd, } 1 \le i \le n \\ 5, & \text{if } v = y_{ij} \text{ for } j = m, m \text{ even, } 1 \le i \le n \\ 6, & \text{if } v = y_{ij} \text{ for } j \text{ even, } 2 \le j \le m-1; 1 \le i \le n \\ 4, & \text{if } v = y_{ij} \text{ for } j \text{ odd, } 2 \le j \le m-1; 1 \le i \le n \end{cases}$$

We get that $f_w(v)$ is vertex coloring of $P_n \odot F_m$. Hence, the upper bound of vertex coloring edge-weighting of $P_n \odot F_m$ is $\mu(P_n \odot F_m) \leq 2$. Thus, we conclude that $\mu(P_n \odot F_m) = 2$.

Theorem 4 Let $P_n \odot C_m$ be corona graph of path graph P_n and cycle graph C_m with $n, m \ge 3$, then vertex coloring edge weighting of graph $P_n \odot C_m$ is

$$\mu(G) = \begin{cases} 2, & \text{for } m \equiv 0 \pmod{4} \\ 3, & \text{for } m \text{ else} \end{cases}$$

Proof: Let $P_n \odot C_m$ be corona graph with vertex set $V(P_n \odot C_m) = \{x_i, x_{ij}; 1 \le i \le n; 1 \le j \le m\}$ and edge set $E(P_n \odot C_m) = \{x_i x_{i+1}; 1 \le i \le n - 1\} \cup \{x_{ij} x_{i(j+1)}; 1 \le i \le n; 1 \le j \le m - 1\} \cup \{x_{i1} x_{im}; 1 \le i \le n\} \cup \{x_i x_{ij}; 1 \le i \le n; 1 \le j \le m\}$. The cardinality of vertices and edges, respectively are $|V(P_n \odot C_m)| = nm + n$ and $|E(P_n \odot C_m)| = 2nm + n - 1$. We prove vertex coloring edge-weighting of $P_n \odot C_m$ for $n, m \ge 4$ is $\mu(P_n \odot C_m) = 2$ for $m \equiv 0 \pmod{4}$ and $\mu(P_n \odot C_m) = 3$ for m else.

Case 1: For $m \equiv 0 \pmod{4}$, We prove that lower bound of vertex coloring edge weighting of $P_n \odot C_m$ is $\mu(P_n \odot C_m) \ge 2$. Based Lemma 1 and Proposition that the lower bound of vertex coloring edge weighting of $P_n \odot C_m$ is $\mu(P_n \odot C_m) \ge \mu(C_m) = 2$. Thus, we have the lower bound of vertex coloring edge-weighting of $P_n \odot C_m$ is $\mu(P_n \odot C_m) \ge \mu(C_m) = 2$.

Furthermore, we prove that the upper bound of vertex coloring edge-weighting of $P_n \odot C_m$ is $\mu(P_n \odot C_m) \leq 2$. We define the vertex coloring 2-edge-weighting of $P_n \odot C_m$ is function $w: E(P_n \odot C_m) \rightarrow \{1, 2\}$. The vertex coloring 2-edge weighting is

$$w(e) = \begin{cases} 1, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 1, 2(\text{mod } 4), 1 \le i \le n-1\\ 2, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 0, 3(\text{mod } 4), 1 \le i \le n-1 \end{cases}$$
$$w(e) = \begin{cases} 1, & \text{if } e = x_i x_{ij} \text{ for } j \text{ odd}, 1 \le j \le m; 1 \le i \le n\\ 2, & \text{if } e = x_i x_{ij} \text{ for } j \text{ even}, 1 \le j \le m; 1 \le i \le n \end{cases}$$
$$w(e) = \begin{cases} 1, & \text{if } e = x_i x_{ij} \text{ for } j \text{ odd}, 1 \le j \le m; 1 \le i \le n\\ 2, & \text{if } e = x_i x_{ij} \text{ for } j \text{ odd}, 1 \le j \le m-1; 1 \le i \le n\\ 2, & \text{if } e = x_{ij} x_{i(j+1)} \text{ for } j \text{ odd}, 1 \le j \le m-1; 1 \le i \le n \end{cases}$$

$$w(e) = 2$$
, if $e = x_{i1}x_{im}$; $1 \le i \le n$

It is easy to see that the vertex coloring of $P_n \odot C_m$ are as follows

$$f_w(v) = \frac{3m}{2} + 1, \text{ if } v = x_i, i = 1$$

$$f_w(v) = \frac{3m}{2} + 2, \text{ if } v = x_i, i = 2k, k \ge 1, 1 \le i \le n$$

$$f_w(v) = \frac{3m}{2} + 3, \text{ if } v = x_i, i = 2k + 1, k \ge 1, 1 \le i \le n$$

$$f_w(v) = \begin{cases} 4, & \text{if } v = x_{ij} \text{ for } j \text{ odd}, 1 \le j \le m; 1 \le i \le n \\ 5, & \text{if } v = x_{ij} \text{ for } j \text{ even}, 1 \le j \le m; 1 \le i \le n \end{cases}$$

We get that $f_w(v)$ is vertex coloring of $P_n \odot C_m$. Hence, the upper bound of vertex coloring edge-weighting of $P_n \odot C_m$ for $m \equiv 0 \pmod{4}$ is $\mu(P_n \odot C_m) \leq 2$. Thus, we conclude that

ICCGANT 2018

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1211 (2019) 012004 doi:10.1088/1742-6596/1211/1/012004

 $\mu(P_n \odot C_m) = 2 \text{ for } m \equiv 0 \pmod{4}.$

Case 2: For $m \neq 0 \pmod{4}$, We prove that lower bound of vertex coloring edge weighting of $P_n \odot C_m$ is $\mu(P_n \odot C_m) \ge 3$. Based Lemma 1 and Proposition that the lower bound of vertex coloring edge weighting of $P_n \odot C_m$ is $\mu(P_n \odot C_m) \ge \mu(C_m) = 3$. Thus, we have the lower bound of vertex coloring edge-weighting of $P_n \odot C_m$ is $\mu(P_n \odot C_m) \ge \mu(C_m) \ge 3$.

Furthermore, we prove that the upper bound of vertex coloring edge-weighting of $P_n \odot C_m$ is $\mu(P_n \odot C_m) \leq 3$. We define the vertex coloring 2-edge-weighting of $P_n \odot C_m$ is function $w: E(P_n \odot C_m) \rightarrow \{1, 2, 3\}$. The vertex coloring 3-edge weighting is

$$w(e) = \begin{cases} 1, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 1, 2 \pmod{4}, 1 \le i \le n-1 \\ 2, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 0, 3 \pmod{4}, 1 \le i \le n-1 \end{cases}$$

$$w(e) = \begin{cases} 1, & \text{if } e = x_i x_{ij} \text{ for } i \equiv 1 \pmod{3}, 1 \le j \le m; 1 \le i \le n \\ 2, & \text{if } e = x_i x_{ij} \text{ for } i \equiv 2 \pmod{3}, 1 \le j \le m; 1 \le i \le n \\ 3, & \text{if } e = x_i x_{ij} \text{ for } i \equiv 0 \pmod{3}, 1 \le j \le m; 1 \le i \le n \\ 2, & \text{if } e = x_i j x_{i(j+1)} \text{ for } j \text{ odd}, 1 \le j \le m-1; 1 \le i \le n \\ 2, & \text{if } e = x_{ij} x_{i(j+1)} \text{ for } j \text{ even}, 1 \le j \le m-1; 1 \le i \le n \\ w(e) = \begin{cases} 1, & \text{if } e = x_{ij} x_{i(j+1)} \text{ for } j \text{ odd}, 1 \le j \le m-1; 1 \le i \le n \\ 2, & \text{if } e = x_{ij} x_{i(j+1)} \text{ for } j \text{ even}, 1 \le j \le m-1; 1 \le i \le n \end{cases} \\ w(e) = \begin{cases} 1, & \text{if } e = x_{i1} x_{im} \text{ for } j \text{ odd}, 1 \le i \le n \\ 2, & \text{if } e = x_{i1} x_{im} \text{ for } j \text{ even}, 1 \le i \le n \end{cases} \end{cases}$$

It is easy to see that the vertex coloring of $P_n \odot C_m$ are as follows

$$f_w(v) = \begin{cases} 2m+i, & \text{if } v = x_i \text{ for } m = 3k, k \ge 1, 1 \le i \le n\\ 2m-1+i, & \text{if } v = x_i \text{ for } m \ne 3k, k \ge 1, 1 \le i \le n \end{cases}$$

for m is odd

$$f_w(v) = \begin{cases} 3, & \text{if } v = x_{ij} \text{ for } j = 1, 1 \le i \le n \\ 5, & \text{if } v = x_{ij} \text{ for } j \equiv 2(\text{mod } 4), 1 \le j \le m; 1 \le i \le n \\ 6, & \text{if } v = x_{ij} \text{ for } j \equiv 3(\text{mod } 4), 1 \le j \le m; 1 \le i \le n \\ 4, & \text{if } v = x_{ij} \text{ for } j \equiv 0(\text{mod } 4), 1 \le j \le m; 1 \le i \le n \end{cases}$$

for m is even

$$f_w(v) = \begin{cases} 4, & \text{if } v = x_{ij} \text{ for } j \equiv 1 \pmod{3}, 1 \leq j \leq m; 1 \leq i \leq n \\ 5, & \text{if } v = x_{ij} \text{ for } j \equiv 2 \pmod{3}, 1 \leq j \leq m; 1 \leq i \leq n \\ 6, & \text{if } v = x_{ij} \text{ for } j \equiv 0 \pmod{3}, 1 \leq j \leq m; 1 \leq i \leq n \end{cases}$$

We get that $f_w(v)$ is vertex coloring of $P_n \odot C_m$. Hence, the upper bound of vertex coloring edge-weighting of $P_n \odot C_m$ for m else is $\mu(P_n \odot C_m) \leq 3$. Thus, we conclude that $\mu(P_n \odot F_m) = 3$ for $m \neq 0 \pmod{4}$. It conclude the proof.

Theorem 5 Let $P_n \odot W_m$ be corona graph of path graph P_n and wheel graph W_m with $n, m \ge 4$, then vertex coloring edge weighting of graph $P_n \odot W_m$ is $\mu(P_n \odot W_m) = 2$.

Proof: Let $P_n \odot W_m$ be corona graph with vertex set $V(P_n \odot W_m) = \{x_i, y_i, y_{ij}; 1 \le i \le n; 1 \le j \le m\}$ and edge set $E(P_n \odot W_m) = \{x_i x_{i+1}; 1 \le i \le n-1\} \cup \{x_i y_{ij}; 1 \le i \le n; 1 \le j \le m\} \cup \{x_i y_i; 1 \le i \le n\} \cup \{y_i y_{ij}; 1 \le i \le n; 1 \le j \le m\} \cup \{y_i y_{i(j+1)}; 1 \le i \le n; 1 \le j \le m-1\} \cup \{y_{i1} y_{im}\}$. The cardinality of vertices and edges, respectively are $|V(P_n \odot W_m)| = nm+2n$ and $|E(P_n \odot W_m)| = 3nm+n$. We prove vertex coloring edge-weighting of $P_n \odot W_m$ for $n, m \ge 4$ is $\mu(P_n \odot W_m) = 2$.

ICCGANT 2018

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1211 (2019) 012004 doi:10.1088/1742-6596/1211/1/012004

We prove that lower bound of vertex coloring edge weighting of $P_n \odot W_m$ is $\mu(P_n \odot W_m) \ge 2$. Based Lemma 1 and Proposition that the lower bound of vertex coloring edge weighting of $P_n \odot W_m$ is $\mu(P_n \odot W_m) \ge \mu(C_m) = 2$. Thus, we have the lower bound of vertex coloring edge-weighting of $P_n \odot W_m$ is $\mu(P_n \odot W_m) \ge 2$.

Furthermore, we prove that the upper bound of vertex coloring edge-weighting of $P_n \odot W_m$ is $\mu(P_n \odot W_m) \leq 2$. We define the vertex coloring 2-edge-weighting of $P_n \odot W_m$ is function $w: E(P_n \odot W_m) \to \{1, 2\}$. The vertex coloring 2-edge weighting is

$$w(e) = \begin{cases} 1, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 1, 2 \pmod{4}, \ 1 \le i \le n-1 \\ 2, & \text{if } e = x_i x_{i+1} \text{ for } i \equiv 0, 3 \pmod{4}, \ 1 \le i \le n-1 \end{cases}$$

- $w(e) = \begin{cases} 1, & \text{if } e = x_i y_{ij} \text{ for } j \text{ odd}, 1 \leq j \leq m; 1 \leq i \leq n \\ 2, & \text{if } e = x_i y_{ij} \text{ for } j \text{ even}, 1 \leq j \leq m; 1 \leq i \leq n \end{cases}$
- $w(e) = \begin{cases} 1, & \text{if } e = y_i y_{ij} \text{ for } j \text{ odd, } 1 \le j \le m; 1 \le i \le n \\ 2, & \text{if } e = y_i y_{ij} \text{ for } j \text{ even, } 1 \le j \le m; 1 \le i \le n \end{cases}$

$$w(e) = \begin{cases} 1, & \text{if } e = y_{ij}y_{i(j+1} \text{ for } j \text{ odd}, 1 \le j \le m-1; 1 \le i \le n \\ 2, & \text{if } e = y_{ij}y_{i(j+1} \text{ for } j \text{ even}, 1 \le j \le m-1; 1 \le i \le n \end{cases}$$

$$w(e) = \begin{cases} 1, & \text{if } e = y_i y_{im} \text{ for } m \text{ odd}, 1 \le i \le n \\ 2, & \text{if } e = y_i y_{im} \text{ for } m \text{ even}, 1 \le i \le n \\ w(e) = 2, \text{ if } e = x_i y_i; 1 \le i \le n \end{cases}$$

It is easy to see that the vertex coloring of
$$P_n \odot W_m$$
 are as follows

$$f_w(v) = \begin{cases} 7+i, & \text{if } v = x_i \text{ for } m = 3, 1 \le i \le n \\ \frac{3(m-2)}{2} + 5 + i, & \text{if } v = x_i \text{ for } m \text{ even}, 1 \le i \le n \\ \frac{3(m-3)}{2} + 6 + i, & \text{if } v = x_i \text{ for } m \text{ odd}, 1 \le i \le n \\ f_w(v) = \begin{cases} \frac{3(m-1)}{2} + 3, & \text{if } v = y_i \text{ for } m \text{ odd}, 1 \le i \le n \\ \frac{3(m-2)}{2} + 5, & \text{if } v = y_i \text{ for } m \text{ even}, 1 \le i \le n \\ \end{cases}$$

$$f_w(v) = \begin{cases} 4, & \text{if } v = y_{ij} \text{ for } j = 1, m = 3, 1 \le i \le n \\ 5, & \text{if } v = y_{ij} \text{ for } j \text{ odd}, 1 \le j \le m; 1 \le i \le n \\ 7, & \text{if } v = y_{ij} \text{ for } j \text{ even}, 1 \le i \le n \end{cases}$$

We get that $f_w(v)$ is vertex coloring of $P_n \odot W_m$. Hence, the upper bound of vertex coloring edge-weighting of $P_n \odot W_m$ is $\mu(P_n \odot W_m) \le 2$. Thus, we conclude that $\mu(P_n \odot W_m) = 2$.

3. Conclusion

In this paper we have given the lower bound of vertex coloring edge weighting of path corona graph H. We have concluded the exact value of vertex coloring edge-weighting of path corona several graphs, namely $\mu(P_n \odot P_m) = \mu(P_n \odot S_m) = \mu(P_n \odot F_m) = \mu(P_n \odot W_m) = 2$, but $\mu(P_n \odot C_m) = 2$ for $m \equiv 2 \pmod{4}$. Hence the following problem arises naturally.

Open Problem 1 Determine lower and upper bound of the vertex coloring edge weighting of graph corona the others graph?

Open Problem 2 Determine lower and upper bound of the vertex coloring edge weighting of graph operation including cartesian, comb product and others?

ICCGANT 2018

IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1211 (2019) 012004 doi:10.1088/1742-6596/1211/1/012004

Acknowledgement

We gratefully acknowledge the support from CGANT - University of Jember of year 2018.

References

- R. Adawiyah, Dafik, I. H. Agustin, A. I. Kristiana, and R. Alfarisi 2018 Some unicyclic graphs and its vertex coloring edge-weighting, AIP Conference Proceedings 2014:020057
- [2] L.Addario-Berry, K. Dalal, Colin Mcdiarmid, Bruc A. Reed, Andrew Thomason 2007 Vertex-colouring edge weightings, *Combinatorica* 27 (1):1–12
- [3] Gerand J. Chang, Changhong Lu, Jiaojiao Wu, Qinglin Yu 2007 Vertex-coloring edge weightings of graphs, Taiwanese Journal of Mathematics 15 (4):1807–1813
- [4] Chartrand G and Lesniak L, 2000 Graphs and digraphs 3rd ed (London: Chapman and Hall)
- [5] Dafik, R. Alfarisi, A. I. Kristiana, R. Adawiyah, and I. H. Agustin 2018 Vertex coloring edge-weighting of some wheel related of graphs, AIP Conference Proceedings 2014:020084
- [6] Andrzej Dudek, David Wajc 2011 On the complexity of vertex-coloring, *Discret Mathematics and Theoretical Computer Science* 13 (3):45–50
- [7] Gross J L, Yellen J and Zhang P 2014 Handbook of graph Theory Second Edition CRC Press Taylor and Francis Group
- [8] Hongliang Lu, Vertex coloring edge weighting of bipartite graphs with two edge weights, arXiv:1307.1863v1[Math.Co]
- [9] Hongliang Lu, Qinglin Yu, Cun-Quan Zhang 2011 Vertex-coloring 2 edge weighting of graphs, European Journal of Combinatorics 32:21-27
- [10] Tao Wang, Qinglin Yu 2008 On vertex-colouring 13-edge weightings, Front. Math. China 3 (4):581-587
- Yezhow Wu, Cun-Quan Zhang, Bao-Xuan Zhu 2017 Vertex-coloring 3 edge weighting of some graphs, *Discret Mathematics* 340:154–159